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FOREWORD 

Many current problems in hydrodynamics are concerned with bodies 
moving at high velocities in fluids, which inevitably entail the formation 
of free boundaries. In the majority of cases  exact solutions of such prob- 
lems  cannot be found. 

This monograph deals with general physical flow properties at the front 
of a body in a fluid, flows with developed cavitation, planing and other 
related situations, when allowance must be made for free-boundary effects 
and surface discontinuity. 

t o  an equal extent with both two- and three-dimensional flows, which allow 
one, with sufficient generality, to  construct a model of the effect under 
consideration, c a r r y  out approximate calculations, interpret experiments, 
and formulate specific mathematical problems. 
author almost completely omitted well- known solutions to  two- dimensional 
problems dealing with collisions, free- jet flow past bodies and planing; 
applicable solutions are therefore quoted as known results which may be 
found in the l i terature .  

in many cases  enables one to  successfully develop a method for finding 
comprehensive estimates and for deriving relatively simple formulas with 
which to  compute some effects which cannot be calculated with mathematical 
exactitude. The author strove, if  only to a limited extent, to  comply with 
engineering requirements; different engineering aspects involving the use 
of simple methods a r e  investigated, and preliminary quantitative estimates 
of complex phenomena associated with the motion of solid bodies in a fluid 
a r e  made. Consequently, many results a r e  derived from simple computa- 
tional formulas. 

It is usually difficult to  theoretically assess the accuracy of a formula 
obtained by approximation methods. Therefore, in every section basic 
experimental data are cited and compared with the approximate theoretical 
results.  Their agreement under specific conditions may se rve  as a basis  
fo r  the use of both the results themselves and of the method involved in their  
derivation. One should bea r  in mind that very few important practical 
hydrodynamic problems a r e  solved theoretically with the aid of flow patterns 
which a r e  fairly close to  those in actual flows. In the majority of important 
cases ,  in o rde r  t o  extract  mathematical solutions, the original flow model 
is simplified t o  some extent and the resulting solutions reflect only to  a 
limited extent the actual physical processes involved. This situation may 
be illustrated by problems on hydrofoils solved i n  the l inear approximation 
on the assumption that the free  surface is plane, and that both the hydrofoil 
thickness and angle of attack a r e  infinitesimal. In actual fact ,  fo r  a profile 

Theorems and general  approaches to  the problem have been concerned 

This being the case,  the 

Analysis of complicated flows arising on the formation of f r ee  boundaries, 



of finite thickness and finite angle of attack the free surface is t o  some 
extent distorted, because the hydrofoil may be raised above the undisturbed 

*level, although this is by no means evident from linear theory. It is 
generally impossible to construct a nonlinear theory and so it is almost 
always necessary to set up an experiment which, however, cannot yield 

.scientific and practical data without theoretical analysis of i ts  design and 
results.  For this purpose an approximate computation may prove useful. 

The classical  resul ts  of Keldysh, Lavrent'ev and Sedov directly con- 
cerned with continuous motion of fluids, subject to  certain modifications, 
appear to  be applicable to  discontinuous cavitational flow. In particular, 
Sedov's thin-wing theory appears to  be valid also for a cavitating hydrofoil. 

This monograph is based on a paperi; by the author bearing the same  
title. 

The section dealing with submersion of a body in a fluid has been sup- 
plemented by data on maximum Icollapse] cavity dimensions, energy lo s s  
in collisions, and on approximations made necessary by the need to  make 
allowance for the fluid's compressibility, compiled on the basis of pub- 
lished work by the author. 

The general  equations of dynamics of a thin body a r e  solved in the form 
of a formula for computing the force due to vibrations of rigid and flexible 
thin bodies. Results for a flexible body explain the swimming mechanism 
of f i s h  and s e a  animals, and also allow interesting computations to be 
undertaken. Subsequent development of this theory to include inhomo- 
geneous wakes of oscillating bodies, analysis of various profiles and 
refinement of experimental results allows one to explain in detail the 
mechanism of a flapping wing. 

Logvmovich, G.V. Gidrodinamika rechenii so svobodnyrni granitsami (Hydrodynamics of Free-Boundary 
Flows).- In: Trudy TsAGI, 935. Moskva. 1965. 
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Chapter One 

PRINCIPAL PROPERTIES OF FREE BOUNDARIES 

When solid bodies a r e  submerged in a fluid, the free boundaries of the 
latter a r e  se t  into motion, which in many cases  cannot be neglected. If 
the body moves at high velocity, but the velocity of the fluid is still sub- 
stantially smal le r  than the speed of sound, and the different points at the 
surface of the body do not simultaneously make contact with the fluid, then 
the ponderability [weight] and compressibility of the fluid can be neglected. 
When many points at the body surface come simultaneously into contact 
with the fluid (impact) the compressibility must be taken into account, since 
the impact produces compression waves, which carry away a part  of the 
energy. The surface tension forces a r e  inconsequential, i f  the dimensions 
of the bodies and the dynamic pressures  in the fluid are sufficiently large.  
The frictional forces a r e  not always negligible; however, they can usually 
be  approximately taken into account and added to the result obtained with 
these neglected. 

Their motion s e t s  the atmospheric gas into motion, which involves some 
changes in the pressure  at the free  boundary. However, in the majority 
of cases  the density of the gas is negligible compared with that of the liquid. 
Hence the pressure  at each point of the free  boundary can to  a good approxi- 
mation be  regarded as uniform and not time-dependent. 

The above considerations make it possible to treat  the fluid as ideal, 
weightless and incompressible, and the pressure at the free boundaries 
as constant. In an ideal fluid any change in the motion can occur only due 
to  normal pressures  applied to  the fluid boundaries. Consequently, i f  the 
flow was potential before being acted upon by the body, i t  will remain SQ 
also thereafter.  

general  properties of f ree ,  constant-pressure boundaries. * 

reduce to three conditions: 1) the pressure  along the f r ee  boundary is 
constant, and consequently the pressure  gradient within the fluid at the 
f r ee  boundary is normal to  it: 2 )  the ra te  at which a point of the free  
boundary moves along the normal to it is equal t o  the projection, on this 
normal,  of the absolute velocity of a fluid particle, coinciding with this 
point: 3) the fluid particles,  once they a r r ive  at the free  boundary, remain 
there  during the subsequent motion. 

Usually the free  boundaries of a fluid a r e  limited by the atmosphere. 

Before passing on to  the study of particular cases, we consider the basic 

The physical properties of moving free boundaries, postulated below, 

3 



1. The dynamic boundary condition 

We assume that the orthogonal coordinate system x ,  y. z is associatedwith 1 
t he  quiescent fluid, and let the unit vectors of the coordinate axes be i. j and 
'k. 
to the f ree  boundary at some point 6, with which the particle under study 
'coincides, a r e  denoted by k,, e, and 4. The absolute particle velocity is 
u = e,u, + ;nun+ & (Figure 1). 

Euler ' s  equation for an ideal fluid not acted upon by mass  forces  is* 

The unit vectors of the outward normal and of two orthogonal tangents 
I 

I 

I 
- -  

I & = - Q grad p. (1 .1)  
I 

The first  boundary condition, which follows from the fact that the pres-  
su re  is the same at any point of the f ree  surface, reduces to the following 
equivalent expressions: 

o r  

- 0; - 
Of e, x - = e,, xgradp = 0 

- e - = ( )  Di  - 0 ;  
,Dl . e -=O. Dt 

Consequently, the absolute acceleration of fluid particles at a f ree ,  constant- 
pressure surface is always directed along the normal to this surface. 

The motion of fluid particles forming the free boundary is equivalent to  
frictionless motion of a mater ia l  point over a moving surface with the normal 

dP reaction defined by -. 
dn 

also here .  

the particle i s  located a r e  denoted by a,, w,, and mr, where s. n and T a r e  the 
pertinent axes. 

Hence all the principles studied in  dynamics apply 

The components of angular velocity of the free  surface at  the point where 

The absolute acceleration of the particle is 

Expansion of the vector product e,,x $ yields 

The pressure  gradient is p = 2 + dD + e !E, but since it follows Ids a d n  

from equation (1.2) that $ = 0 and - 0 we obtain dT 

D ' The Stokes derivative is used in its ordinary sense, i.e., when differentiation pertains t o  individual 
fluid particles. 

4 
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FIGURE 2. 

In particular, for plane-parallel motion of a segment of the f ree  surface 
and assuming that the flow in each plane z = const is the same,  and aligning 
the s and n axes in this plane in the manner shown in Figure 2, we der ive 

uc=  0, W , I O ,  *=- 2, and a, = 0, where a is the angle between s and X .  

0; Hence, by virtue of the fact that e,= = 0, boundary conditions (1.3) and 

(1.4) can be written in the form 

It is easy to  show that conditions (1.5) hold for  any axisymmetrical flow, 
provided that axes s and n coincide with the plane passing through the 
axis of symmetry.  

divided into two groups. 
par t ic les  do not emerge at the f ree  surface, for example, an infinite 
submerged wedge or cone without flow separation (Figure 3). 
cases  the individual particles can be designated by their initial ( t  = 0) 
coordinates a t  the undisturbed f ree  surface ( x,. yo, G),, The subsequent 
location of the particle, expressed as x = x (xg. yo, 5, t ) ,  9 = y (x0. yo, z,, t ) .  
and z = z ( x 0 ,  yo. 20. t ) ,  defines its t ra jectory s'. 

until now residing within the fluid, rise to  the free  surface. 
instances of planing and submersion of wedges and cones with finite 
dimensions, when f ree  je ts  or cavities form at the edges of bodies. 
Obviously these particles can be designated by the time and coordinates 
of the point a t  which they a r e  shedded from the solid surface, which 
again a r e  functions of time. The f ree  surfaces  formed by particles 
situated there  a t  the s t a r t  of motion will be termed outer f ree  boundaries, 
while the free boundaries formed by particles shedded by the edges of 
the body a r e  termed inner free boundaries. We note that in a number 
of the cases  outer free boundaries may coexist simultaneously with the 
formation of inner boundaries (Figure 4).  
the planing s tep of a gliding [hydrofoil] vessel  is an inner f ree  surface,  
while that a t  the front and s ides  of the hydrofoil and wake is an outer 
f ree  surface. 

All hydrodynamic problems with moving f ree  boundaries can be sub- 
The first group comprises flows in which new 

In these 

The second group of problems includes flows in which new particles, 
These a r e  

Thus, the free surface behind 

5 



FIGURE 3. 

Outer free 
,boundarv 

FIGURE 4. 

After the particles emerge at  the f ree  surface, the behavior of the 
[individual] par ts  of these boundaries is the same and obeys the same equa- 
tions, i r respect ive a s  to  whether the boundaries a r e  inner o r  outer. 
However, if  the fluid s tar ted moving from res t ,  then for an outer f ree  
boundary at  t ime t = 0 the velocities of all  the boundary particles will be 
urn= 0, uno= 0 and uIo = 0. 
a t  the boundary at  some t ime t > 0 and has in  general  nonzero initial 
velocities. 

of its initial coordinates. 
axisymmetrical  flows it is convenient, for  outer boundaries, to regard 5 
as denoting the initial distance from the particle to  the coordinate origin, 
while the meaning of E for inner boundaries will be clarified below. 

For inner f r e e  boundaries the particle emerges 

Each individual fluid particle is designated by E, which denotes the set 
In the particular case of two-dimensional or 

6 



2. The kinematic boundary condition 

Let us consider the two-dimensional motion of a f ree-surface element of 
length 6s, on which a r e  present particles 5 and E + 6E (Figure 5). 
coordinates of these particles at the t ime t - t ,  be E = s and 5 + 65 = s + 6s. 
Denoting the velocity vector pertaining to each particle by Z (5. t )  we find that the 
absolute velocity of particle 5 is ;(& t,) and its displacement over the small  
t ime interval 61 is i (5 .  t1)6t. 

instant will be ;(E + 6&, tI) = i ( i ,  tl) +a 6s and its displacement will be 

i ( 5 .  I , )& + &6&. 

and normal to  the free  surface at  t ime t ,  by e, and c., respectively, we find 
that at  t ime t ,  + 6t the distance between the points under study changes by 

an amount i &6E& and the free-surface element in its new position makes an 

angle 6a =. The distance along the boundary 

s between particles 5 and E + 65 at t ime I, + 6t w i l l  be 6s'- &S + 
at t ime t, ,  it was 65 

Let the 

The velocity of particle E +  Sg at the same 
au 

Denoting, a s  before, the unit vectors along the tangent a5 

= g 
6t with the original position. 

- 
6 5 6 1 ,  while 

sat 
6s. 

c 

FIGURE 5 .  

We now introduce the relative elongation of the free surface 

as 
E = lim -6 - - ')=x- 1. 

As & -. 0, we have 
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and hence 

Here the partial derivative is used in the sense that the t ime is held con- 
stant while differentiation is performed by moving from one particle to 

another along the free boundary s. 

where R = R (s. t )  is the radius of curvature of the free  surface in the region 
of particle E under study i f  5 = s .  
theorem on "nonextensibility" of f ree  boundaries. 

aa 1 The curvature of this surface is 5 = k, 

The f i rs t  of equations (1.6) yields the 

The distances between particles measured along the free surface remain 
DE constant i f  e = const o r  E = 0.  

that this condition is satisfied only when vector 6 is orthogonal to element F. 

The distances between individual particles along a moving 
free surface remain constant only when the partial derivative of the absolute 
velocity vector of the fluid along the free surface,  taken along this surface,  
is orthogonal to  the free  surface.  

Substitution of the right-hand side of the second of equations (1.6) into 
the first of equations (1.5) yields the Wagner generalized boundary condition 

It follows from the first of equations (1.6) 
a i  

T h e  o r  e m  I. 

The fact  that free-surface elements 6s have no inflection in the vicinity of 

particle E is expressed by the condition 

at a two-dimensional f ree  boundary moving parallel to itself (Figure 6) 
cannot be changed by arbi t rar i ly  modifying 
the normal velocity of the boundary. 

This theorem is of importance in 
the study of unsteady motion of bodies 
with spray sheets forming at their  
surface.  

If the f ree  surface is described by 
the equation F (x.  y. z, t )  = 0, then the 
normal velocity of each point of this 
surface is / l o /  

Da = O .  

T h e o r e m 11. The tangential velocities u, ( E ,  1 )  of individual particles 

aF 
at 
- 

0" = p . (1.8) v + + r&) 
However, velocity on pertains to  points 

FIGUKE 6. 

of surface F ,  and-not to  particles 5 at 
this surface.  

8 



3. Orthogonal free surface 

A free boundary, for which the particle velocity vector at all  i t s  points 
is directed normal to  this surface,  will be termed an orthogonal f ree  surface.  
Certain general theorems hold for such free boundaries. 

T h e  o r e m 111. A continuous free boundary moving at finite velocities 
and accelerations can be orthogonal to  the trajectories of particles 
belonging to  it only i f  the trajectories of these particles descr ibe straight 
l ines.  

Let particle E, belonging to  f ree  boundary s (Figure 7 ) ,  move along 
trajectory s‘ which has a radius of curvature R’ at the point of intersection 

with S; the absolute velocity of the particle i s  u =g, the accelerations 

tangential and normal t o  the t ra jectory a r e  $ and $, all these accelera- 

tions lying in the plane tangent to the trajectory.  
absolute value of the tangent of the angle between the tangent t o  the t r a -  
jectory and w, the vector of absolute acceleration of the  particle,  is 

equal to the ratio !$ : z .  
vector w is orthogonal to s; consequently, directions s and s’ will be ortho- 

gonal when u # O ,  when either R’+cc  o r  - -+ This yields 
the above theorem. 

di 

It is evident that the 

du According to  dynamic conditions (1  .l) and (1 .2 )  

du 
df ( i f  h?‘ is finite). 

FIGURE I .  FIGURE 8 

If surface s is orthogonal to  particle trajectories s’ (Figure 8) ,  then 
according t o  Theorem I11 trajectories s‘ a r e  straight l ines and, therefore,  

Da the angular velocity E in the vicinity of each particle at surface s is 

zero,  and also the tangential component of absolute velocity u, is zero.  

Then it follows from the second of equations (1.6) that % = 0 and, hence, 

the normal velocity u, is a function of t ime,  but not of s along the orthogonal 
f ree  surfaces  s. 

as 
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The difference in velocity potentials a t  two points of a f r e e  surface is 

v2 - Q, = u&. At  an orthogonal f ree  surface u, = 0, and so v2 - T, = 0 fo r  

all  points of this surface a t  any time. 
T h e o r e m  IV. A f ree  orthogonal surface is an equipotential surface,  

the potential of which is not a function of s, but may be a function of time. 
Continuous closed orthogonal f ree  surfaces ,  which move with finite 

and continuous velocities and accelerations, may be either spherical or  
cylindrical surfaces ,  which confine a fluid volume from within. 
of this type a r e  related, in particular, t o  expansion of gas bubbles in a 
liquid, and may also include the approximate solution of the problem of 
flow of a thin jet past a slender c i rcular  cone, with developed cavitation 
past the cone. The solution of the problem of expansion of a spherical  
cavity due to  the pressure  of an included gas is known / l o / .  
above problems a r e  considered below, stated somewhat differently and 
in  a more general  form. 

In proving Theorem I11 we omitted the case  d t  - -+ m, which corresponds 

to "impact" origination of flow. 
develops upon uniform submersion of a wedge is stopped at some instant, 
but the free  boundaries retain the shape they acquired during submersion. 
Then ( t  = I!) the wedge is instantaneously set  into motion by applying an 
impulsive force to it. It is c lear  that during the infinitesimal period of accelera-  
tion of the wedge, the particles at the f ree  surface w i l l  be subjected to infinite 
acceleration which, according to equation (1. l),  a r e  directed normal to the curved 

f ree  surface.  These accelerations will 
produce finite velocities of the 
particles; these velocities will be 
normal to boundary s and will satisfy 
the solution of the corresponding 
boundary-layer problem. 

immediately following the impact.  
Since the curvature of surface s is 

variable and x" 4 0, it follows from 

equations (1.5) that, although U, = 0 

a t  t ime i ,  the a c c e l e r a t i o n 2  = u, E p 0 

f rom equations (1.6) the angular velocity 
of elements of s at the initial instant will 

be $ =% when us = 0. Hence u, # 0 at  each point of s a t  subsequent t imes,  

and the free boundary ceases  to  be orthogonal af ter  the impact (Figure 9). 
The above considerations make it possible to  a s ses s  the ra te  of increment 
of the velocity potential T at  the f ree  surface immediately following the 
impact. In fact, for some smal l  t ime interval dt af ter  the impact 

2 

I 

Problems 

Both the 

du 

F o r  example, suppose the flow which 

However, surface s is orthogonal 

au 

Du Da 
D1 FIGURE 9. 

The second t e r m  in the brackets is neglected a s  a high-order infinitesimal. 
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Assuming that the f ree  surface extends to  infinity, where the velocity 
potential cp = 0, we obtain for point s 

The fraction of kinetic energy of the fluid, ctrresponding to  the integral 

of 'p,u,ds along the f ree  surface, will be AT,= 

show that quantity 2 at t = t ,  is equal t o  half the kinetic energy flux 

through the initial f ree  boundary. 
T, cannot be changed by subsequently stopping the body. Hence, i f  the 
body is stopped some t ime after it has been se t  into motion, the fluid 
will not come to  a complete res t .  
between motions with f ree  boundaries and motion in an infinite fluid. 

U P  &. It is easy to 
dT I s  1 

The cumulative potential 'ps and energy 

This is precisely the main difference 

4. Steady free boundaries 

The t e r m  steady f ree  boundary is applied to  a surface which moves 

In the two-dimensional case the steady surface can be 
relative to  a stationary fluid uniformly and in a straight line, without 
changing form.  
expressed in  the n. y coordinate system associated with the quiescent 
fluid by the equation F ( x  - V ,  t .  y - V,  t )  = 0; this  equation is not an 
explicit function of t ime t .  The steady surface can clearly be treated 
a s  stationary in the x' ,  y' coordinate system by setting I 3 x' + V,t and 

Let us clarify some general  properties of steady boundaries. Suppose 
y = y' -+ V , f .  

vector v, = iV, + jV, is the translational velocity of the free boundary, and 
vector 
x ' ,  y' coordinates. 

Since the particle must remain all the t ime at  surface s, its relative 
velocity can be directed only along the a r c  of this surface; consequently 
V, = T'v,. The dynamic boundary condition ( 1.5) thus yields 

the relative velocity of a boundary particle in  the system of 
The absolute particle velocity is then = v,+ V r . .  

- 

FIGURE 10. 
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d v  DV 
Since i t  has been assumed that 

steady free boundary at any t ime. 
along boundary s ,  and velocity V, along this boundary is constant (Figure 10). 

steady free boundary is constant for all particles at all  points on the 
boundary. 

and normal t o  the boundary a r e  

= 0 ,  $ = 0 for  each particle at a 

Hence each particle moves with t ime  

T h e  o r e m V (Wagner). The relative particulate velocity along any 

The projections of the absolute velocity of particle E on the tangent 

(1.9) _ _  ._ - _  _ -  
u s  = e,u = erVo + Vs; u, = e,u = e,V, 

If surface s contains a point o r  points where us = 0 and u, = 0 ,  then it 
follows from the second of equations (1.9) that the direction of transport  
[ reference-frame] velocity at these points coincides with the direction of 
the tangent to  s. 
(Figure 11). 

The second of equations (1.9) then yields V ,  + V, = 0 

I I 

FIGURE 11. 

T h e  o r  e m  VI. The relative fluid particle velocity at a steady free 
surface extending into the quiescent fluid, where the direction of the 
tangent to  the free  surface coincides with the direction of the t ransport  
[reference- f rame] velocity, is always equal in absolute magnitude to 
the translational velocity and is directed opposite t o  i t .  

If V,+V,=O, then, setting angle (s.V,)=a', we find ( see  Figure 11) 

that u, = V ,  sin a': 

of the velocity is u = 2V,sina' .  The ratio of R', the radius of curvature 

of the trajectory,  to the radius of curvature R of surface s wil l  then be 

R 

[reference-frame] and absolute velocity is S(n - a), i. e., half the angle 
between vt and Vr. 

us  = V,(cosa' - 1) = - 2vUsin2$, a n d  the absolute magnitude 

2 

= 4 sin $. Obviously, the angle between the directions of the t ransport  
I 
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T h e o r e m  VII. The absolute velocity vector of every particle at each 
point of a steady f r ee  boundary extending into the quiescent fluid, bisects 
the angle between the transport  and relative velocities. 

We determine the distance between particles. Substituting the expres- 
sion for 0 into the f i rs t  of equations (1.6) we obtain 

The transport  velocity is constant over the entire surface and therefore 

%= 0. 

hence + = 0, from which E = 0.  This implies that e is constant along S .  

If E = 0 at  one point of surface s ,  then e = 0 over the entire f r ee  boundary. 
T h e  o r  e m  VIII. The distance between fluid particles along a steady 

free surface always remains constant. 
This theorem is clearified by Figure 1 2 .  Lines s,, s,, s, depict respec- 

tively equal t ra jector ies  of particles E,. El and &, which a r e  initially located 
at the undisturbed boundary, coinciding with the x axis.  
s intersects these t ra jector ies  during the subsequent instants of t ime 
t , .  t ,  and t , ,  s o  that distance AE between the particles remains constant. 

We note that Theorems V through VI11 lend themselves t o  elementary 
proof by "reversing the motion," i. e. ,  by regarding surface s as stationary 
and the liquid as moving with velocity ve. Then the  free surface will be 
a streamline at which the relative velocity is constant on the basis  of 
Bernoulli's equations. However, the only approach used he re  is that of 
study of the "absolute" motion relative to a fluid at rest at infinity. 

- 
The relative velocity V ,  is constant according to Theorem V; 

ds av De 

. . ,  

Free boundary 

y1 0 
X 

FIGURE 12. FIGURE 13. 

Let us investigate whether a steady free surface can have cusps. 
Assume that a steady free boundary has a cusp s, (Figure 13) ,  and let  
surface s at all  its points f a r  f rom point s, coincide with the direction of 
the transport  velocity ve, and let the absolute velocities of particles at 
these surface regions be zero.  
that in this case the relative velocity V, in the forward part  of s is directed 
toward point s,, while that in the rear part of s , i s  directed away from this 

It follows from Theorems V and VI 
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point. Consequently, particle 5 ,  which at a given t ime corresponds t o  the 
cusp s,, should simultaneously have velocities ii' = Ire +e;V,  and u" = + e ]V , ,  
which a r e  not equal, since unit vectors e; and e; from both sides of the cusp 
a r e  different. Hence it follows that particle 5,  should rotate. But the points 

ideal and moving only by virtue of normal p re s su res .  
tion at point s, is impossible. 

irrotational fluid cannot have cusps.  

velocity without losing their  shape. 
surface is steady and also has  a cusp. 
Theorem IX is due to  the fact that the trochoidal wave has  a nonzero 
vortex, while Theorem IX is valid for a f r ee  surface bounding irrotational 
flow. 

We shall show that a closed steady free boundary cannot move through 
a fluid at r e s t .  Let u s  assume that a space within the fluid is bounded by 
a closed surface s ,  moving with constant velocity Vc within a fluid at r e s t  
and satisfying all the conditions for steady boundaries. 
particle velocity at a single point of s is given, then vector equation 
u = 7, -t e,V will yield the velocity V, which, according t o  Theorem V, is 
constant along the entire boundary s. 
tion at the free  surface will be nonzero, thus giving rise to  the Zhukovskii 
force which, however, should be zero,  since by the statement of the prob- 
lem the pressure  at each point of the f r ee  surface is the same .  
velocity V,  should be equal to  zero,  while the absolute particulate velocities 
at surface s should be ii =ve. Obviously, this condition can be satisfied 
when curve s bounds a region filled with fluid undergoing translational 
motion. When the outer space is filled with fluid, vector U of each particle 
e coincides with the direction of the streamline passing through this particle 
(Figure 14). The above condition can be satisfied only when the entire fluid 
undergoes translational motion with velocity J, or (with the problem as stated 
here) V, = 0, since ve is by definition the transport  velocity relative t o  a 
fluid at rest. 

- 
, 
I 

I contained within the cusp a r e  irrotational, since the fluid is assumed to  be 
Consequently, rota- 

T h e o r e m  IX. A stready f r e e  surface serving as the boundary of an 

I 
It is known that trochoidal waves have a cusp and move at constant I 

I Consequently, in this case the f r ee  
This apparent contradiction t o  

I 

If the absolute 
I 

- 

If V, 4 0, then the velocity circula- 

Thus 

1 
1 
I 

I 
T h e  o r e m X .  

steady free surface moving with nonzero transport  velocity. 
Steady free boundaries a r i s e  ahead of a planing plate or on uniform 

translational motion of a body within a fluid accompanied by formation of 

A fluid volume at rest at infinity cannot contain a closed 

I 
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a cavity behind it. In particular, Theorem X without the solution of 
the potential problem explains the phenomenon of reentrant jets* ab 

(Figure 15) during cavitating flow 
past a plate or some other body. 
Physical experience shows that 
reentrant jets are  unstable, break 
up, migrate to  the boundaries of 
the cavity, and are car r ied  away 
by the flow. In the idealized state- 
ment of the problem pressure  p r  within 
the cavity is lower than the pressure  
at infinity, and so  the absolute value 
of the relative velocity is V,= 
c v , v p ,  where the cavitation 

-- 

FIGURE 15. 

number is a =- - > 0. Absolute velocity vector i no longer bisects the e l :  n 

angle between V, ind T,; the f ree  surface proper is formed by particles 
shed from the edges of the plate and acts as  an inner f ree  boundary. 
However, all the general  resul ts  pertaining to  f ree  boundaries a r e  
applicable also in this case.  

5. Self-similar free boundaries 

A free boundary which remains geometrically similar t o  itself at any 
t ime is called a self-s imilar  f ree  boundary (Figure 16). Such free boundaries 
a r i se ,  for  example, upon symmetr ical  submersion of a wedge or cone, if  
one considers the boundary within the plane passing through the axis of 
symmetry.  

X 

FIGURE 16. 

To retain geometrical  s imilar i ty  each l inear  dimension of a self- 
s imi la r  f ree  surface should increase (or decrease)  at a ra te  proportional to 
this  linear dimension. If the equation of the free  surface in polar 

[First discovered by Efros, D.A.- DAN SSSR, Vo1.51, No.4, pp.267--270. 1946; and Vo1.60, pp.29-31. 
1948.1 
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coordinates r .  I3 is expressed in the form r 

scale ,  then the absolute magnitude of the radial velocity of the boundary 

at 13 = const will be v, = $ h ' ,  and the radial velocity vector will be v, = i,,V,, 

where 
a r c  s from ray OA, along some fluid particle s l ides .  
of fluid particle 5 at surface s is composed of the radial velocity < and 
relative tangential velocity P, = i s V ,  along the f ree  surface. 
velocity vector of particle E has the form 

hf(0), where h is some l inear  

is the unit vector in the r direction. We shall measure free-surface 
The absolute velocity 

The absolute 

(1.10) 

We shall now examine the properties of a self-s imilar  f ree  boundary 
' h  propagating with constant velocity h =T or Vr=- L for each value of 0 .  

Figure 16  shows two positions of the free boundary at  t imes t and t f d t ;  
it is assumed that particle is initially ( I  = 0 )  at the center of s imilar i ty  
0, while the f ree  surface coincides with the x axis. 
of flow w e  have that absolute velocities U ( E .  t )  of the fluid a t  points 1 and 2 
where the radius-vector i meets s ( t )  and s ( t  + dt)  a r e  equal, i.e., U, = U,. 
Passing from point 1 to  point 3 along a line with constant t ,  and then f rom 
point 3 to  point 2 with constant s, we find 

I 

F rom the self-s imilar i ty  

(1.11) 

This transition can be expressed differently, a s  ;,ds + cdt = g d r .  
using the vectorial definition of velocity given by equation (1. l o ) ,  we find 

ds that V ,  = - - - - A. 
dt 

making use of the fact that L,=i,, yields 

From this, 

Substitution of this result into equation ( 1.1 l ) ,  

2.: + g P 0. (1.12) 

The vector i ( E ,  t )  sat isf ies  $ = 2. Hence i f  dynamic boundary condition - - d? (E= 0 is satisfied, then the kinematic condition 

simultaneously. This condition shows that a moving free surface has 
constant length and that distances between individual particles remain 
constant ( E  = s) .  

T h e o r e m XI. 
or axisymmetrical  f ree  surface propagating with constant velocity remain 
constant. 

This theorem and all the previous deviations pertain in substance to  
self- s imi la r  outer f ree  boundaries, which a r e  produced on self- s imi la r  
submersion of bodies, when an undisturbed f r ee  surface is broken by a 
body and particles which find themselves at the point of discontinuity 
continue moving along the edges of the body (Figure 3 ) .  A more detailed 
analysis of properties of self- s imi la r  f r e e  boundaries which a r i s e  on 
submersion of bodies into a fluid is given in Chapter Four .  

=esx  = O  is satisfied 

Distances between particles a t  a self- s imi la r  plane 
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6 .  The spray root 

The immersion of bodies, planing, and some other cases  a r e  
accompanied by the formation of spray sheets near  the body surface.  
The free surface far from the body does not usually curve much, but 
the curvature in  the vicinity of the spray-sheet base increases sharply, 
and angle a made by the free  surface with the horizontal attains high 
values over a small  segment of s. 
smal l  such regions [the spray root] a r e  important in the formation of the flow 
and in the force exerted by the body on the fluid. 
clarify the principal properties of the spray root fo r  two-dimensional o r  
axisymmetrical  flows. 

To calculate the tangent of the absolute particulate velocity u, one 
can in general integrate the first of equations (1.5), which expresses 
the dynamic boundary condition. 

It wi l l  subsequently be seen that 

In this connection we shall  

This yields 

(1.13) 

It should, however, be remembered that velocities u,, and us, pertain 
to  the same  particle 5 : here  u, = U,  ( E ,  t )  and a = u ( 5 ,  t ) .  Hence in o rde r  to 
c a r r y  out integration, an expression must first be  found for u, = u.(&, a).  
In general this is difficult. 
(see Section 4) ,  when the transport  velocity of the boundary (for example, 
V e )  is constant and equal to  i v , ,  the free surface is given by y = f ( x )  in 
the moving coordinate system, and as x -+ 00, y --c 0 and y' + 0, Theorem VI 
holds. 
constant along S ,  while the normal velocity of the particle is U, = (e , i )V,  = 

= --,sinor, we find that u, (€ . ,u ) -  

In the particular case of a steady free surface 

Since in this case the tangential relative velocity V ,  = - V ,  is 

V , s i n u d a = - - V , ( I - c o s u ) .  -I 
It was taken into account while integrating tha t  as x --c O O , ~  + 0 and 

a - 0.  This result  (mentioned in Section 5) shows that the absolute 
tangential velocity at a steady surface depends only on the angle of turn 
a and not on the form of the equation of the free surface. In the case of 
an accelerating free surface it is also possible t o  integrate equation (1.2) 
or (l."), but the calculations become complicated even in the simplest  of 
cases .  

Denoting the spray-root surface length by As and the transport  
w As acceleration by we, it can be shown that when L (< 1 ,  the tangential 

velocity u,  after traversing the curved region is determined exactly as 
for a steady surface.  

along a short  spray- root surface segment is approximately constant and 
in value is close to the transport  velocity of the curving segment proper. 
This theorem is illustrated in Figures 1 7  and 18. 

Vi 

T h e o r e m XI1 (Wagner). The relative tangential velocity of particles 
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FIGURE 17.  
1 5 '  

FIGURE 18. 

7. The t ip  of a spray sheet 

The point at which the f ree  boundary of the fluid is in contact with solid 
boundaries of the body is called the tip of the spray sheet (Figure 19). 

The following theorem is easily proved from 
continuity and flow irrotation conditions. 

of fluid par t ic les  a t  the t i p  of a spray sheet 
is equal to  the absolute velocity of the tip proper. 

A spray-sheet tip forms either a t  the surface 
of a body which is in contact with the f ree  surface, 
o r  in the region when the outer and inner f ree  
surfaces  merge upon formation of f ree  jets 

T h e o r e m XI11 (Wagner). The absolute velocity 

v,-J 

FIGURE R s 19. (splashes) .  

The above theorems as  such do not yield 

only define the kinematics of the motion, since the utilization of the 
dynamic boundary layer does not go beyond using the condition of ortho- 
gonality of the absolute acceleration vector of a surface particle to the 
f ree  surface. However, the limitations imposed by these theorems 
together with other hydrodynamic conditions make it possible to  derive 
useful resul ts  and to gain helpful insight into the flow pattern even before 
solving the problem. 

solutions to specific problems. In effect they 
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Chapter Two  

SOME GENERAL PROPERTIES OF POTENTIAL 
FREE- BOUNDAR Y FLOWS 

In this chapter we shall consider some general  properties of potential 
and in general  unsteady flows of an ideal fluid with moving free boundaries. 
It should be remembered that in the overwhelming number of practical 
problems involving the motion of bodies on fluid surfaces the f ree  boundaries 
have a complicated curvilinear shape, and it is virtually impossible to  
solve the Laplace equation exactly. This requires  certain simplifications, 
the proper selection of which necessitates a detailed study of the flow. 
It is assumed that the reader  is familiar with the theory of potential flows, 
and hence attention is paid primarily to features inherent t o  free-boundary 
flows. 
the equations of hydrodynamics and, in addition, to constructing a physical, 
c lear  flow pattern. 

Par t icular  attention is paid to clarification of some fine points in 

1. The velocity potential 

Mathematically, the velocity potential cp is defined a s  a function of 
coordinates X~ y. z and of t ime t ,  the gradient of which is equal to  the velocity 
vector at this point of space. Thus, u = grad cp o r  

- 

It is known from potential theory that function 'p i s  singular in  a 
simply- connected space, possesses  neither a maximum nor  a minimum 
within the fluid, and that the potential field is devoid of vortices and sources .  

The fact that each elementary volume of the space should be supplied 
by the same amount of fluid which is discharged from it is expressed for 
an incompressible fluid by the continuity equation 

For potential flows substitution of components $, $ and 2 into the above 
expression yields the Laplace equation 
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This form of the Laplace equation is retained also in  the coordiL.3te 
system moving with the flow. 
u ( x .  y. z, t )  for which Acp = 0 (equation (2.2))  does not contain sources  
or vortices.  

some finite portion of space x ,  y, z filled by a fluid and confined by a 
closed surface Z. Surface Z may be stationary as well a s  mobile, f ree  
or solid. If the absolute velocities of transport  of surface Z along the 
inner normal to it a r e  denoted by V,,, while the absolute fluid velocities 
a r e  designated a s  previously by V, then the general  continuity equation 
will express  the fact that the flow of a fluid volume within region Z should 
be equal to  the rate  of growth of the volume of region Z proper. 
taken to denote the unit vector of the inner normal, then the fluid volume 
entering volume Z per unit t ime through surface element 6Z is - (V, - en<) 6Z, 
while the r a t e  of growth of the volume of region 2 is j VJZ .  Integrating 

the first expression over the entire surface Z and equating the result  t o  
the second integral, we obtain the general continuity equation 

Any point x .  y, z of the velocity field - 

It is sometimes convenient to  consider the continuity condition for  

If e, is 

i. 

This equation does not contain the proper motion of boundaries of 
region 2 .  It is important to  remember  that the general  continuity equation 
does not stipulate absence of vortices and sources  within this region. The 
presence within region 2 of a closed vortex o r  source and sink of equal 
strengths ( a  doublet) will not contradict equation ( 2 . 3 ) .  Hence the flow 
satisfying this equation may be both potential and nonpotential [rotational] 
in all or some parts of space Z, while the flow satisfying condition ( 2 . 2 )  
in region Z is potential at al l  points of this region. 

2. The stream function 

Stream function 9 expresses  the fluid flux per unit t ime through a 
given surface.  In the planar case b$ = -v,by and SJ, = v , ~ x ;  consequently, 

In the axisyrflmetrical case,  with the y axis serving a s  the axis of 
symmetry and x denoting the distance between the point and this axis, we 
have 6.9 = u+6x. For reference,  we now present the Laplace equation for 
cp and the continuity equation for $ Jn the case of axisymmetrical flow with 
y as the axis of symmetry.  
above axis of symmetry,  these equations assume the form 

.. 
Since x is the distance from the point t o  the 
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The s t ream function at  f ree  boundaries will be treated a s  the flux 
passing through a rea  element 6s of the f ree  boundary per unit t ime 
whenthis a r ea  element has  been instantaneously stopped, while the 
par t ic les  continue moving with velocity i. 

volume under study. 
we have there  6$ = <;iiS < 0, since the inner normal is regarded a s  
positive. 
the inner t o  the outer boundary. 

The positive direction he re  is that of the flow moving into the fluid 
If u, is directed outward from the f ree  surface,  

Figure 20 shows the pattern of streamlines extending f rom 

FIGURE 20. 

3. Boundary conditions and the general nature 
of the flows 

The boundary conditions at  a surface of a solid body consist in the 
fact that the normal component of V, of the velocity of a point on the body 
is equal to  the normal component of the absolute fluid velocity at this  
point (impermeability of the solid surface) .  

that $ = V, = ZJV, + 
of some center ,  fixed relative to  the body, while and 7 a r e  respectively 
the angular velocity vector of the body and the radius vector of a point on 
the body surface with origin at this center. 

Fo r  potential flow this means 

x ;1) for each value of t ,  where E is the velocity 

At f r ee  boundaries also 2 = u,,* but usually free boundaries must be 

defined from the condition that pressure  p at  them is  specified o r  usually 
constant (see Chapter One). 

tions. However, it is known that the Laplace equation AT = 0 has a unique 
av solution for each t ime t ,  i f  the values of cp or 

boundaries of region Z, o r  i f  values of 9 a r e  specified at  one par t  of 

surface X and those of 2 at  the other. 

The Laplace equation can in general  have an infinite number of solu- 

are specified at known 

The symbol u is reserved for denoting the absolute velocities at outer free boundaries, while v is used 
for designating absolute velocities within the fluid and at solid boundaries. In Chapter One the inner 
normal was treated as positive for the free boundary, for which reason the s i p  of un is reversed here. 
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For  f ree  boundary flows, where the problem of determining the shape 
(equation) of the free boundary is difficult a s  such, it is impossible in 
many cases  to obtain a unique solution of the Laplace equation for each 
instant of time. 
in  principle a unique solution under the aforementioned conditions makes 
it possible to  prove Wagner's theorem on the uniqueness of the flow in 
the presence of f ree  boundaries. 

fluid, when only outer f ree  boundaries form, we have given at t ime I, 
the velocity P of all  the points of the body, and consequently s=i,,p at the surface of the body, the equation of the f ree  surface 

s ( x .  y , z , t o )  and the velocity distribution at  it i ( s , t 0 ) ,  i.e., U, on s 

a t  t ime t o ,  and that these values satisfy the corresponding boundary 
value problem AT = 0 and hence uniquely define the potential field 

v ( ~ , y , z . t o )  within the entire fluid region. The values of a t  to a r e  

determined from the boundary condition $ = U, - e  

since u, and zC, a r e  known for t o ,  while the values of g at  the 

subsequent t ime to + df a r e  found from the expression 

However, the fact that the Laplace equation AT = 0 has 

Let  u s  assume that when a body of specified shape i s  submerged in a 

Lh 

Du 
ri a) 

Du 
( see  equation (l.?)), 

a; 

u, (S, t o  + dt) = u, (s. to) + Df dt' 

Integration of this new value of u, along s yields q ( s .  I, + dt)  = q (s, to) + dv; 
vectors i d t  define the new location of the boundary s( t , - tdt ) .  

again the Laplace equation AT = 0 for boundary conditions $ = &Pat the 

surface of the body and q(s, to + dt) on s ( t 0  + &) we derive the value of 

u,(t, + dt) on s, and consequently also of 2;' for ( t o  + dt ), etc. 

boundaries and the velocity potential field of the fluid a r e  given at the initial 
t ime,  while the shape of the body and the law governing its motion a r e  
specified for the subsequent t ime instants, the hydrodynamic problem has 
a unique solution for each subsequent t ime instant. 

This theorem also applies to  the case of emergence of new fluid par- 
t ic les  at the f ree  boundary. 

Solving 

T h e o  r e m  XIV (Wagner). When the shape of the body, shape of f ree  

4. Velocity potential a t  f ree  boundaries 

The velocity potential in  a simply connected space can be expressed 
a s  a linear velocity integral, taken along any reconcilable curve drawn 
between points A and E .  Denoting a contour element of length by & and 
the fluid velocity at points of this element by 0 ,  and denoting the tangential 
velocity vector by e , ,  we have 
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Referring point A t o  infinity, where the fluid is at rest, V A  can be 
regarded a s  equal t o  an additive constant, which w i l l  be t reated a s  equal 
everywhere to zero .  W e  note that, in order  t o  regard va a s  equal to  zero,  
we require  a law governing the decrease in the tangent to the fluid velocity 
distribution v, = &: upon approaching the point of infinity. In particular, 
for  a two-dimensional source at the origin the fluid velocity decreases  

along radius r a s  ; and the integral 1: = Inr +- C does not tend to zero  or  

to  a constant value a t  infinity. However, it will be shown below that 
potentials of this kind a r e  not encountered in the submersion phenomena 
under study. 

fluid contour, i. e., each of its points moves in  space with the same 
velocities a s  the fluid at this point, then the elementary component 04s of 
the velocity flux along this contour changes with t ime due  t o  changes in 
u s ,  a s  well as  due to  changes in the length of element d s  / l o / .  Hence 

1 

If contour S, along which the tangential velocity us i s  integrated, is a 

since 

dx = dv,. 
Dt 

Constructing s imi la r  expressions along other axes, i f  the mass  forces  
have potential U and pressure  p is a function only of density e ,  and also 
making u s e  of the fact that the Euler  equation for  the x axis yields 

From this follows the known theorem due to  Lord Kelvin on the 
constancy of circulation in a closed fluid contour. 
is closed, then points A and B coincide and the right-hand side of equation 
(2.5) vanishes. Then the integral on the left-hand side expresses  circula- 

tion r of velocity in a closed contour. Since Er = 0, the circulation in this 
contour remains constant. 

by free boundaries s, consisting of a fluid (streamline) and extending into 
the region where the fluid is at  r e s t  (where cp = 0), point A can be placed at 

In fact, i f  the contour 

Dt 

When a region containing a weightless and incompressible fluid is bounded 

boundary s in the fa r  region; consequently T = O .  V'A P ressure  p along the 

ent i re  boundary is assumed to be constant, and the potential of mass  forces  
is zero when weight is neglected, i. e., U = 0. 
tion of equation (2.5) can be associated with some fluid particle E at the 
f ree  surface s and then the integral on the left-hand side can be treated 
a s  the "potential of particle E . ' I  Equation (2.5) yields 

The upper limit of integra- 

Equation (2.6) se rves  a s  the boundary condition for  any f ree  surface under 
the above conditions. 
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The elementary length of the trajectory of each surface particle E is 
ds' = u'(E. t )  dt  . If the potential at point x,, yo, where particle 5 is situated 
at time to is 'po, but the velocity u,, # 0 ,  and then at t ime t the particle has 
moved together with the free  boundary s and arrived at point x .  y. z ,  then the 
potential at this point 'p ( x ,  y. L. t )  o r  'p ( E ,  t )  (these two definitions a r e  fully 
equivalent due t o  the single-valuedness of the potential field) is determined 
by integrating equation (2.6)  with respect to  t ime: 

Y l  

Expression (2 .7 )  is sometimes convenient in the study of the motion of f ree  
boundaries. 
that qo = 0.  

tion of infinite p re s su res  during an infinitesimal period at some boundary 
segment, we conclude from equation (2 .7 )  that the velocity potential of s u r -  
face particles of an ideal incompressible fluid does not change during 
impact. 

Impact pressure  p at solid boundaries can be a s  high a s  desired.  
Integrating equation (2.5)  with respect to  t ime, and making use of the 
fact that impact duration T is infinitesimal while the velocity u over the 
integration interval is finite, we derive 

If the fluid s t a r t s  moving from rest ,  it can always be assumed 

Defining impact initiation of a flow as  the onset of flow due to  the applica- 

1 
'PB - 'PA = - - PIA)' 

where p, = 

difference at the ends of a streamline can also be treated a s  the result  of 
the application of a difference in impulsive pressures  at points B and A .  

p d f  is the impulsive pressure.  Consequently, the potential j 

0le.o velocity of propagation of surface t. 
The flow pattern is depicted in Figure 2 1. 

It w a s  previously pointed out that 
streamlines I and trajectories s' have 
a common tangent at f ree  surface s.  
Let 61 be an infinitesimal segment of 

f r e e  surface s .  
all 

1 3 the streamline directed to particle E at 
Neglecting the quantity 

along this element, we have 

5. Equipotential surfaces  

,I--, 

FIGURE 21 
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Differentiation with respect to t ime yields 

The difference between the velocities of the ends of element 61 will be 

% = -v,, where the normal velocity of propagation of surface T is denoted 

by V,. By definition, cpr = const; hence 
Df 

Du 1 
s 2  Equating the above equation to equation (2 .S),  we find that 

o r  V ,  = u,  i f  + 0. Consequently, an equipotential surface infinitely 

close to f ree  surface s propagates in the same direction a s  s, but a t  a velocity 
half that of par t ic les  a t  s. 

infinitely close to a f ree  surface propagating a t  finite and continuous 
velocities and accelerations have the same directions along streamlines, 
but equal half the velocity of surface par t ic les  situated on the same streamline. 

If the fluid s ta r ted  moving 
from rest ,  then the velocity potential a t  the f ree  surface ( a s  everywhere in 
the fiuid) is initially zern. 
potential a t  f ree  boundary s will change with t ime (increase), but will remain 
zero a t  an infinite distance from the f ree  surface. 
which cp = 0, is always infinitesimally close to  the initial free boundary s, 
during all  subsequent t imes at  infinity. 
distances f rom the body the elevation of surface s over s,, is small  and the 

,particulate velocities 
it can be claimed that surface cp = 0 during its motion always divides the 
space between the instantaneous position of s and its initial position so into 
two approximately equal parts, as long a s  the distance between s and so is 
small  compared with the distance traveled by the body which se t  the fluid 
in motion. 
cp and 9 in the vicinity of f ree  surface s, if  the surface proper and velocity 
ii a t  the surface a r e  given. 

61 + u ( u  - V ) = -ua 
1 Du 

T h e  o r e  m XV. The absolute velocities of an equipotential surface 

This theorem has an interesting corollary. 

In the region close to  the body the velocity 

Hence surface 1, at  

Since at  l a rge  (but not infinite) 

a r e  directed approximately along normals  to  s, 

Theorem XV makes it possible to construct a net of surfaces  

6. P r e s s u r e  within the fluid 

The pressure  p a t  point x ,  y, z in the coordinate system associated with 
a fluid a t  r e s t  is defined by the Cauchy-Lagrange integral 

% + $ + S $ - + U = F ( t ) .  (2.8) 

For  a heavy and incompressible fluid 1 % = 

rest a t  infinity in such a manner that a s  r +g3 we have $-+ 0 and also 

cp -t 0 (or 'p-. const), and all of its f ree  boundaries a re  acted upon by a 

and U = 0 ;  i f  the fluid is a t  
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constant pressure  po,  then function F ( t )  can be treated a s  constant and 
equal to  po e .  Then this equation simplifies to  

$+$+$ I’.u.z.t = f I,+- 
Here potential = cp(x, y, z ,  t ) ,  pressure  p and absolute velocity u a r e  

determined at  a point ( x ,  y.z) stationary in space for the same time t at  

which Obviously the pressure  a t  f ree  surface s is p o ;  

hence the condition $+$ - 0  is another form of the dynamic boundary 

condition for points in ( x ,  y, z )  space which, for given t ,  coincide with 
surface s. 

x ’ .  y’, z’ in a coordinate system moving relative to system x ,  y, z ,  i. e., 
cp = cp ( x ‘ ,  y’, z ‘ ,  t ) ,  then coordinates x ’ ,  y‘, 2‘ for  each fixed point of space x .  y, z 
will be time- dependent and the potential a t  a point x .  y, z will change both due to  its 
explicit t ime dependence and due to  changes in coordinates x ’ .  y’. z’. This must be 

taken into account when calculating 

a given t ime t and that the components of the velocity a t  which an a rb i t ra ry  
point of the moving coordinate system moves relative to the stationary 
coordinate system a r e  v,, Vu, and V,, we derive for infinitesimal subsequent 
time intervals x = x’ + V,  t ;  y = y‘ + V,t and z = z’ + V , t .  Since ‘ p ( x ,  y. z ,  t )  = 
= cp ( x ’ ,  y’, 2’. t )  due to  uniqueness of the potential field and coincidence of the 
coordinate axes, differentiation of the second expression as a composite 
function yields 

is determined. 

If velocity potential q i  is specified a s  a function of t ime t and coordinates 

for  substitution into equation (2.8) .  
at 

Assuming that system x ’ ,  y’, z‘ coincides with stationary system x ,  y. z a t  

At the time under consideration we have 3 = $ and similarly for  the 

other [two] directions; 
w e  have 

from the previous definition of the coordinates 

The t ransport  ( reference-frame] velocity of a point in the moving co- 
ordinate system is P, = vo+ 0 x7, where vo is the velocity vector of the 
origin of the moving system, 6 is the vector of angular velocity at which 
the moving coordinate system rotates  relative to  the stationary system, 
while 7 is the radius vector of the point in the x ’ ,  y’, z’ coordinate system. 
Hence the t ransport  velocity of the point can be expressed in the form 

V, = iv, + j ~ ,  + kV, = V o  + 0 X? = L [ V ,  + ( z ‘ o ~  - y’o,)I + 
+ j [V, + (x’o, - z’oJ + k IV,. + (y‘w, - x‘ou)l. 

Finally the equation fo r  pressure,  if  the velocity potential is specified 
in the moving coordinate system, has the following form fo r  the previously 
mentioned conditions: 
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The pr ime in the expression for 2 means that the partial derivative is 

taken of v, specified in the moving coordinate system, while the differentia- 
tion is car r ied  out with constant values of coordinates x ' ,  y'. z'. 
that any point of the f ree  boundary at  any t ime is acted upon by a pressure  
p - po = const. 

If particle 5 at surface s is placed at  some instant at the origin of the 
stationary coordinate system, and one of the axes is directed along the 
tangent to t ra jectory s', then we obtain from equation (2.6) 

It is assumed 

3T ds' Since d7 = u and - = U, substitution of these quantities into equation (2.6) 
dt  

yields a boundary condition for  these points of space I, IJ. z which, a t  the 
t ime under study, coincide with the boundary. 

expressed in the form 

in a moving coordinate system, whose origin is at  all t imes associated with 
particle E ,  while assuming for simplicity that the direction of one of the 
axes  of the moving system coincides with the tangent to the trajectory. 
Formally equation (2.9) then yields the boundary condition 

This condition can be 

+ f = 0 (as  was pointed out above). 

The particle potential 'p ( E .  I )  can also be treated a s  a potential specified 

This  form of the boundary condition is equivalent t o  equation (2.6), since 
by definition 

wt, - flv (5. 
Dt dl  . 

7. Kinetic energy of the fluid 

The instantaneous value of the kinetic energy of a fluid bounded by a 
surface 2 is 

T =  - s l i c p $ d C .  (2.10) 
1 

acp 
an The values of cp and - in this expression pertain t o  points of instantaneous 

location of boundary surface Z a t  the t ime for  which the energy is cal- 
culated; the sign convention is such that the normal directed into the 
fluid is positive. If the fluid fills an infinite half-space and i t s  motion 
is induced by a body moving at  the surface, one must select a s  this 
surface the f ree  boundary s, wetted surface s) of the body and some 
surface L, lying at  infinite distance from the disturbed region, ex- 
tending from the f r e e  surface and bounding the fluid region under study. 

9 and the o rde r  of magnitude of the growth of surface s, with increasing an 

distance to  it, it is shown that the energy integral (2.10) taken over this 

By estimating the o rde r  of magnitude of the reduction in 'p and 
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surface can be a s  small  a s  desired, i f  the value of r ,  is sufficiently large.  
Hence in the cases  under study the integration extends only to surface 
s A SI = 2.  

Equation (2.10) is usually derived by means of Green 's  theorem (see 
below and also / l o / ) ,  but it can also be obtained from simple considera- 
tions of mechanics (Figure 22). 
connected and the fluid motion within it is potential. 
region Z contains no sources  o r  vorticks, and each s t reamline may pass  
only from one point on the boundary to  another. 
mally thin flow tube which defines an a rea  element 62, a t  its origin at the 
inner boundary, while the absolute fluid velocity a t  this point of the boundary 
is v,. 
it defines an a rea  6v, and the fluid velocity is 0,. 
flow tube length by bi, the velocity by u and the cross-sectional a r e a  of the 

V2 tube by 6 F ,  w e  can express  the kinetic energy of mass  ~ 6 1 6 F  a s  (~616F) -. 2 
The continuity equation yields V , ~ Z , C O S  (q, n,) = v6F = - V , ~ ~ , C O S  (v2 ,  n,), where 

Let u s  assume that region 2: is simply 
Consequently, 

W e  consider an infinitesi- 

At the point where the tube under study again a r r ives  a t  the boundary 
Denoting an element of 

s r\ 

= V , C O S ( V , .  n), while vdl = (p2- (p,; consequently, the kinetic energy of the dn 

fluid contained within'the entire flow tube is 

X 
FIGURE 22. 

Integration over the ent i re  surface I: includes surfaces  Z, and 2, and 
formally yields equation (2.10). 
to use the formula 

However, in some cases  i t  is convenient 

(2.11) 

where, for example, q, and 2 pertain to the solid surface, while 'pl applies 

to the ends of the same s t reamlines  emerging at  the free  surface. 
sense equation (2.10) can be regarded as the energy integral over the 
flow tubes. 

In this 
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8. The energy equation 

The energy equation for an inviscid fluid mass  is 

(2.12) 

Internal energy U in the cases  under study is the potential energy of mass  
forces  and the deformation energy of the fluid. 
pressible ideal fluid I/ = 0. 

It is of importance that the surface in formula (2.12) bounds some fluid 
of constant mass  which moves together with the boundaries of Z, since the 
fluid par t ic les  do not penetrate these boundaries. Hence V, is the normal 
velocity of the boundaries proper of region I: (positive along the inner nor-  
mal), while p is the external pressure a t  these boundaries. 

Since the fluid is incompressible and there  is no mass flux through s u r -  

face Z, the volume of closed region Z should remain constant and V,dZ = 0. 

Obviously, the constant pressure  p o  acting on a l l  the boundaries of Z cannot 
change the kinetic energy of the fluid mass,  and so only the excess pres-  
su re  p-p4=Ap is important in (2.12). 

the reduction in p and V ,  with increasing distance from the center of dis- 
turbances, that the contribution to integral (2.12) of the par t s  of surface 
Z located a t  infinity is infinitesimal. 

surface of the body. Suppose some central  point, fixed relative to the 
body surface, moves with velocity Fa, while the angular velocity of the 
body is G, then the normal velocity of point 7 on the body surface is 

n ( V , + G x ; ) =  V,. In formula (2.12) it is c lear  that ~ p V . b = ~ ( P - P P d ~ ( ~ o +  

+ o x r ) d s  = PPo+A;, where P is a force vector, while M is the momentum 
vector of the pressure  forces  exerted on the fluid by surface s, of the body, 
reduced to the above central point. 

energy equation 

F o r  a weightless incom- 

L 

A s  in Section 7, it is shown by estimating the order  of magnitude of 

By assumption, excess  pressure  p - p 0  is nonzero only at  sg, the wetted 

- -  
' h  

Thus, (2.12) yields for a weightless incompressible fluid (U = 0) the 

(2.13) M -- -= D' PV + mii, 

which expresses  the law of conservation of energy (the work of external 
forces  is equal to the rate  of increment of the fluid energy). 
incompressible weightless ideal fluid the ent i re  energy can only exist in 
the form of kinetic energy T .  

Equations (2.12) and (2.13) for an ideal incompressible fluid a r e  equi- 
valent to  equations of dynamics of a system of material points with ideal 
constraints. However, these constraints a r e  not always holonomic. 

F o r  an 

9. The momentum theorem 

The momentum theorem for that par t  of weightless fluid bounded by 
surface S which moves together with the par t ic les  has the same meaning 
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as  for a system of material  points, the motion of which is studied 
in theoretical mechanics. 
and the principal vector of the moment of momentum [angular momentum] 
of all the particles within region Z by and E,,,, respectively, and assum- 
ing also that e,dZ = d x ,  we obtain 

Denoting the principal momentum vector 

(2.14) 

The right-hand sides of equations (2.14) express  the sums of external 
forces and external moments acting on the fluid m a s s  bounded by fluid 
boundary X, which reduce to integrals of pressure  forces and of moments 
of pressure forces at surface 2 .  

The linear and angular momenta of fluid within volume dQ, which is 
located at the given instant at  point F ,  a r e  respectively d R  =gradqedQ and 
d u m  = fi xgradcp)gdQ. Hence. for the entire region under study 

The Gauss theorem yields 

gradcpdQ = - is cpdx: 
Q L 

where cp i s  the boundary value of the velocity potential at the t ime under 
study. 

F o r  the motion of a body at  the surface of a fluid, treated below, one 
always encounters parts of f ree  boundary s and wetted surface s, of the 
body, at which the fluid particles move with high velocities, which de- 
c rease  when moving away from the surface and tend to ze ro  at infinite 
distance from the region of disturbances. It will therefore be assumed 
that the closed surface I: consists of surface s k ,  surface s which s t a r t s  
from the surface of the body and extends over large distances from i t ,  
where surface s is closed by an infinitely removed part of surface L, 
which is designated by s-. 
is to be used in these cases  and what is the mechanical meaning of 
individual t e r m s  of the general formulas (2.14). 

We now clarify how the momentum theorem 

The Gauss theorem yields 

(2.15) 

Momenta 
sA t s and s,, and a r e  equal to  corresponding integrals in formula (2.15). 
The velocity potential rp is determined from equation (2.7) by integration 
with respect to t ime.  
f = 0 ,  when the potential of each particle was zero,  we derive the potential 
of some particle on the bounding surface at t ime I :  

and Em of external forces  pertain respectively to  surface 

Assuming that the motion started from r e s t  at 

'p= -f P I  f T S u 2 d t .  

0 
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1 

Here  p,= ( p  p ~ d t  is the impulsive pressure.  s -  
At t h g  infinitely removed part of surface s, w e  have 

(2.16) 

In the second integral of the right-hand side the particulate velocity i 
decreases  with increase in distance I from the center of disturbances not 

slower than F ,  while the a r e a  of surface s, increases a s  a function of 9. 

Consequently, for a region of disturbances of arbitrary s i ze  it is always 
possible to  select  within an infinite half- space large distances r such that 

this integral, which decreases  not slower than 7, will be as small  as 

desired for an arbi t rary,  but finite t ime t .  

1 

I 

W e  now subtract &, from each part of equality (2.15): 

(2.17) 

By the initial condition, surface Z moves together with the fluid; con- 
sequently i t  bounds a constant fluid volume. 
constant pressure  po and additional variable pressure p - po, which is 
determined by the motion of the boundaries. 
at f ree  boundaries s is zero.  
solid boundaries of the body reduces to  the force 

Surface 2 is acted upon by 

The impulsive p re s su re  p r  
The integral of excess p res su re  over the 

with which the body acts  on the fluid. The pressure  force at an infinitely 

removed part  of the boundary applied externally is 7, %. Thus, dif- 

ferentiation of (2.17) yields the final formula of the momentum theorem in 
the form 

(2.18) 

The magnitude of the actual momentum R of al l  the fluid particles in 
region Z, a s  the momentum of reaction forces 3, external to  2 ,  depends 
on the shape of the removed part s, of the boundary and in this sense they 
a r e  indeterminate. Hence, the "momentum'l vector, or the momentum of 
pressure  forces  applied to the fluid through the surface of a body moving 
on i t ,  is determined from expression (2.17) and may not equal the actual 
momentum of all the fluid particles.  

It is similarly shown that the vector of the "moment of momentum'' or 
the impulsive moment of external pressure forces  on the fluid relative to  
point ;= 0 ,  is 
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It also follows f rom this definition that 

P =  - ~ ( p - p , J &  

According to boundary condition ( 2 . 6 ) ,  we have 

The momentum theorem for steady flows will be applied below to 
specific problems. 

10. Zero-potential surface 

During any submersion of a solid body into a fluid initially at r e s t ,  
for which we assume at zero t ime ( t  = 0) that cp = 0, there  will exist at 
all its points during each subsequent t ime instant ( t  ;> 0) within the fluid 

/’ I 
i 

Y 

S 

I 

a surface 7 ,  at which during the 
entire motion cp = 0. At t ime t = 0 
f r ee  surface s is a surface at which 
cp = 0.  During subsequent periods 
positive potentials will be “accumu- 
lated” at surface s; hence, accord- 
ing to  Theorem XV ~ surface cp = 0 
from the very s t a r t  will move in the 
same  direction a s  surface s, and at 
all  t imes  will divide the fluid region 
which rose  above the initial level 
into two parts: one between s and 
T , in which cp > 0,  and another, 
where cp < 0 (Figure 2 3 ) .  

The p res su re  at surface T 
(where cp = 0) is defined by equation 
(2.9) .  

i 
I 

Since at surface T we have 

0’ -- P r - P o  - v $ J - T .  (2.19) 
e FIGURE 23. 

When the pressure  within the 
fluid is greater  than or equal to  

po,  we derive that the normal velocity of transport  of surface T proper is 

v,, .!. L), where u is the fluid velocity at surface T. Here it is clear  that 

velocity Consequently, for any con- 
tinuous submersion of a body into a fluid initially at r e s t ,  surface 7 ,  at 
which cp = 0,  is always contained within the fluid and intersects the surface 
of the body or inner free boundaries. 
illustrated below. 

2 

= gradq is orthogonal t o  surface T. 

The la t ter  statement wi l l  be 
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Suppose a hemisphere with radius r + is drawn from the center of 
disturbances at the f ree  surface within the fluid i n  such a manner that it 
intersects  the f r ee  surface; on this hemisphere, by definition, cp -L 0. 
If surface t, at which cp = 0,  passes from the line of intersection of the 
hemisphere and the free boundary such that it does not intersect the body 
or the inner f r ee  boundaries, then the hemisphere and surface t bound a 
region with fluid at rest;  consequently, the velocity of surface t proper 
and of the fluid at it will be zero.  Then surface t will be equivalent to  a 

solid surface, at  which = 0 ,  but i t  is possible that cp#O, which is 

incompatible with the definition of surface t and the entire formulation 
of the problem. 

continuity) positive potentials a r i s e  at the f ree  surface, at the surface 
of the body, and everywhere within the fluid; 
no longer l ies  within the fluid. 

Euler ' s  
vector equation in the moving coordinate system t, q, associated with a 
point on surface r ,  can be expressed in the two-dimensional case a s  two 
sca l a r  equations : 

acp 

When the body is extracted from the fluid at  r e s t  (without break in 

surface q = 0 in this case 

W e  now clarify the location of the maximum pressure point. 

where o is the angular velocity with which sys tem T, 11 rotates relative 
t o  the stationary coordinate system, which at the time under consideration 
coincides with axes T, q. 

If then the 
trajectory of this particle is recti l inear and it moves with constant velocity, 

$ = 0, 0 = 0 ; thus 

the maximum-pressure point. 
points anywhere within the fluid, the excess pressure is positive, surface 
T is continuous, has a single-valued curvature and extends from the su r -  
face of the body to  infinity, where it coincides asymptotically with the 
initial f r ee  surface.  These conditions, i n  particular, a r e  satisfied by 
flows with self- s imilar  and steady f r ee  boundaries. 

For uniform motions with self-similar o r  steady 
free boundaries one of the p re s su re  maxima is always located at the zero- 
potential surface and at that point on this surface where the transport  
velocity of the surface is equal to the absolute velocity of the fluid. 

When u - V ,  = 0, particle 5, always remains at surface t. 

= 0 ,  = 0 .  and particle En is always situated at 

It is assumed that there are no singular 

T h e  o r  e m  XVI. 

~ 

I 
1 11. Mass, momentum and energy fluxes through the 

zero- pot entia1 surface 

To fix ideas, we shall  consider the case when surface T (cp = 0) l ies 
within the fluid, while the f r e e  surface moves outward and extends from 
particle Ea to  infinity, where it coincides with the undisturbed level. We 
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fix at the free  surface particle 5 .  approached by streamline i which is 
orthogonal to surface T and intersects  it at point T, (see Figure 2 3 ) .  

Q,, then -$ = (u - Vq) dr ; however, the l imit  of integration can be 

variable, since streamline 1 may intersect surface t in different points 
at different t imes .  

Momentum & of the fluid within region Q, increases  due to  transport  
of momentum e ( v - V , , ) u d ; d f  and work of pressure  forces  on surface T, 
equal to (pT - p,,)dTdt. A s  a resul t ,  equation ( 2 . 1 9 )  gives 

If thevolume of the region bounded by surfaces  T. 1 and s is denoted by 
dQ 

t, 

( 2 . 2 0 )  

This formula makes no allowance for increase in momentum due to p re s su re  
forces  acting on surface 1, between r and s .  

The increment of kinetic energy T ,  in region Q, is also composed of the 

energy transport  Q ( V -  V,)$dTdt  a d  work of pressure  forces ( p t  - p 0 )  vdrdt.  
Consequently 

( 2 . 2 1 )  

In many cases  of submersion of bodies and their  motion at  f ree  surfaces 
it is possible to locate (using additional considerations) a region of possible 
location of surface cp = 0 and certain features of this surface.  
mulas ( 2 . 2 0 )  and ( 2 . 2  1) sometimes provide useful results.  

Then for- 

12. Green's theorem 

Omitting the proof /IO/, Green's theorem for two arbi t rary functions 
cp and q', which a r e  continuous and have continuous f i r s t  and second 
derivatives within a connection region Q ,  bounded by surface X, can be 
expressed a s  

x dxdydz - l i j  qfhqdxdydz.  ( 2 . 2 2 )  

If 'p and 'p' a r e  velocity potentials of two different irrotational flows, 
The equality of the then for an incompressible fluid Acp = 0 and AT' = 0. 

first integrals on the right-hand side yields the relationship 

( 2 . 2 3 )  
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When ‘p = cp’ and Acp = 0, each of equations ( 2 . 2 2 )  upon being multiplied 

by -T,  e will yield an expression for the kinetic energy of the fluid in 

region Z in t e r m s  of values of cp and 2 at the boundaries (see equation ( 2 . 1 0 ) ) .  

local disturbance at the free  surface is equal t o  the effect of a doublet 
placed at the center of disturbance (Figure 24) .  

Using equation ( 2 . 2 3 )  we can prove that the effect of infinity due t o  any 

FIGURE 24. 

We limit  ourselves to  the two-dimensional case.  Potential T’ can be 
represented as lnr’, since Inr‘ satisfies the Laplace equation A(lnr‘)= 0 i f  
r‘ is the distance from point A (Figure 24)  to  any point of space x ,  y (within 
a s  well as outside the fluid). 
region I ,  and consequently when integrating over boundaries Z of this 
region point A should be excluded. 
of radius r ,  with center at point A .  

around this c i rc le ,  i f  dZ,  = r,do, will be 

corresponding contribution of the second integral will be zero,  since 
there  are no sources  or sinks outside circle r, .  
over the boundaries of region I gives 

By assumption, point A lies in fluid-filled 

This can be done by drawing a circle 
The contribution of the first integral 

‘ p ~ r l d o  -+2n(p, a s  r,  -+ 0, and the 
1 s 

W2.n ” 

Integration of (2 .23 )  only 

Function cp’ is harmonic within region I ,  as well as within region tI 
external t o  the fluid, and so allowance must be made in calculating (pA that 
region I I  with boundary Z’ also has  a potential 9. 
A is an external point and for  any point of the boundary of region I I  the 

But for region I I  point 
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value of radius r' at point A is finite. It therefore follows f rom ( 2 . 2 3 )  that 

To calculate qn the l a s t  two expressions should be added. However, 
when integrating along the contour of region Il it should be t raversed in 

the same direction a s  the contour of region 1. But - - d hence, 

reversing the direction of t r ave r se  of contour II, after replacing 
a 

-d;i, 'pn can be calculated by t ravers ing sk +s;l: twice during the integration. 

Substitution of the values of q~ and 
region into the integrals gives 

d 
an an" 

a 
by 

acp at the boundaries of the disturbed 

( 2 . 2 4 )  

In the preceding formulas we omitted integration over circles s, and 
f. However, the radii  of these circles  can be made a s  large a s  desired,  
and the value of qn cannot depend on the magnitude of these radii  a s  r, + m. 

Hence in the first  integral we should have 'p- - C ( =  O ) ,  since % . - ,ds, = ',do. 

In the second integral, since 'p ,=Inr '+oo  a s  r,+oo, s % d s  - 0 ;  here  this 

integral should decrease with increasing r, much more rapidly than the 
increase in lnr,. 
can be dispensed with by setting the additive constant for y at infinity 
equal to  zero.  

All these considerations a r e  s imilar  in the three-dimensional case,  
for  which 'p' should be represented by function l /r ' .  The expression for 
the potential at point A then takes the form 

I 

'a7 

Io0 

Thus, integration over all the infinitely f a r  boundaries 

( 2 . 2 5 )  

Let u s  find the first  t e r m  of the se r i e s  expansion of 'p about point A at 
infinity. 

In the two-dimensional case r' = L/(x + :)* +(y-qp ,  where x and y a r e  
coordinates of point A; 5 and q a r e  the coordinates of the contour of the 
disturbed part of boundaries s) and s .  
E ,  q (( r ' ,  we have approximately, for  E -. f co and cp --+ 0, 

When for the disturbed region 

r' = r ( 1  - + -9 + ...); Inr' = Inr - -9 + ..., r* 

where r = v m .  
Since distance r from the origin of coordinates I, y to point A is constant, 

t h e ,  as above, sh arc  thc boundaries of thc body, P dcmotcs the free surfaces, and s., des igna te  surfaces 
;it i n f i n i t y ;  I: = sk + s + s,. 
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h - where 

Substitution of these expressions into (2.24) yields 

3 = COS (n, X )  an an and '!3- = COS (n, y). 

I A r\ 

v A = y  1 1 p ( $ c o s ( n . ~ ) + ~ c o s ( n ,  y ) ) d s - y  e + F ) $ d s .  
'k* sk* 

If the flow is symmetrical  about the y axis, then scos(n>) and E, at 
symmetrical  points a r e  of the same magnitude and opposite sign, while 

p and 

tion and the direction of r ;  then -2 = cos i ) .  The momentum of the external 

force,  or the momentum of the fluid along the axis, is By - - p 

while the streamline element is d$ = 2 ds. 

a r e  equal. We denote by .9 the angle between the negative y direc- 

cpcos(n, y)d~, 
'p 

For the two-dimenslonal case 

(2.26) 

If the y axis is the axis of symmetry of the flow, then in the three- 
dimensional case,  using formula (2.25), w e  find similarly 

(2.27) 

I We recall  that the positive directions in (2.26) and (2.27) a r e  those of 
the normal and of the normal velocity directed into the fluid. When the 
fluid is acted upon by forces along the negative y axis, By <O, and the 

can be termed the static moment of the streamline relative to the undisturbed 
level. 

a fluid-filled half-space at distances l a rge r  than the disturbed region and 
large compared with the actual dimensions of this region, is equivalent 
t o  the effect of a corresponding doublet. 

F o r  example, i f  a half-submerged cylinder of radius R floats on a 
horizontal f r ee  surface and acquires downward velocity vertical  velocity V 
due t o  impact, the momentum component along the y axis will be BY = 

- n  - - In integral (2.26) 

tl = - R c o s e ;  dg = V R c o s M O ,  at surface s we have '1 = 0. 

I 
I integral in parentheses is also negative. The integral i n  (2.26) and (2.27) 

T h e  o r e m  XVII. The effect of any local motion of the boundaries of 
I 
I 

I 
I 

R e V (the positive y direction is upward). 

Hence 
1 

The potential at a far point within the fluid is 'p=+ V R ' c o s 9 ;  the expres- 

sion for w is the same  a s  for a cylinder performing translational motion 
within an infinite fluid. 

shwon by s imilar  considerations that the moment of impulsive forces  at 
the boundaries under the same  conditions will reduce to a higher-order 
doublet. 

F o r  asymmetrical  flow the doublet axis is not vertical. It can be 

However, this point is not considered here.  
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Chapter Three  

ELEMENTARY CASES OF FREE-BOUNDARY FLOWS 

Spherical and cylindrical flows of an ideal incompressible fluid a r e  
the free-boundary flows which a r e  simplest  for study. If flow s t a r t s  f rom 
rest due to the application of normal pressures  at the boundaries, it is 
potential. According to  Theorems I11 and IV, f ree  boundaries in these cases  
a r e  orthogonal; it follows that the velocity potential at each point of a f r e e  

boundary at a given t ime has  the same value 2 = 0. Many of the conclu- 

sions and methods presented in the previous chapters can be illustrated 
and developed by a study of these cases .  At the end of this chapter we 
shall consider flow with steady f ree  boundaries which a r i s e s ,  in particular, 
on steady planing o r  on developed cavitation. Some of the presented 
resu l t s  a r e  important in their  own right, while others  illustrate the 
material  of the f i rs t  two chapters, but sometimes result in a new t rea t -  
ment of physical phenomena. 

FLOW WITH SPHERICAL SYMMETRY 

1. Spherical flow 

Let u s  imagine an infinite region, filled with an incompressible,  
weightless ideal fluid, which contains a spherical cavity R = R ( t )  filled with 
gas at p ressure  p .  A t  infinity the pressure  tends to the constant value 
p -t po = const and the fluid is at res t  (grad cp + 0). Since the density of the 
gas within the sphere is negligible compared with the density of the fluid, 
the motion of the gas within the sphere is neglected. 

Initially ( f  = 0) the ent i re  fluid was at  rest and the velocity potential 
may be assumed to  be ze ro  (cp=O) at  any point in the fluid-filled space. 

The spherical symmetry of the flow makes it possible to  represent  
each fluid particle E = r a s  a spherical layer  with surface 4nk2 and thickness 
6E at the initial t ime.  
t imes  by r = r ( f ) ,  we can express  the particle volume for these t imes  a s  
4nrt6r It = 4nSYiE 

the physical fact that the volume of each incompressible-fluid particle 
remains constant during motion. Consequently 

Denoting the radius of this layer  during subsequent 

The continuity equation in Lagrangian form expresses  
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Taking the limit a s  6r -+ dr and dr --f dr and integrating, we find that 
d(;ra) 5 0 for each t ime instant and fo r  all the particles; thus the particulate 

velocity is = and the particulate velocity potential is q ( r )  = - rdr 
m .  s =  

- - - 2. These expressions are also valid for a surface ( r  = R )  pa&- 

t icle,  for which the spherical coordinate is R = R ( t ) .  Hence A ( t )  = d R a  and 

the velocity potential is v ( r )  = --%; the potential at the f ree  surface r = R 

is v ( R )  = - R R .  Pressu re  p ( r )  can be determined directly from equation 
( 2 . 8 )  by referr ing point A t o  infinity. 34 

The total derivative of the potential has  the form 

Since by assumption r A  --f 03 and pa .+ p o ,  and also because RR2 = r'r, we have 

At the f r ee  surface f = R  

In the Eulerian treatment /la/ this problem arr,ounts to expressing the 
flow through any stationary sphere of radius r' as  4nr'%,, where u, = u, ( r ' .  t) is 
the radial velocity. Since the continuity equation is now expressed in the 

stationary coordinate system (r'*u,)  = 0. 

again derive It is clear  that the velocity and p res su re  

potentials for point r '  = r do not depend on the point of view from which 
the flow is observed. 

d From this v, = g, and we 
RR' (r'. t )  = - r'. 

2. Inertia flow 

This case  is possible when the pressure  within the sphere is p ( R )  = po, 
i. e., is equal t o  the pressure  at infinity. 
f r ee  boundary is obtained from equation ( 3 . 2 )  by setting its left-hand side 
equal t o  zero.  
R3+ = const; this  constant can be defined as Rid; ,  i f  Ro and R, respectively 
are the initial sphere  radius and the initial radial velocity of its boundaries. 
Excess  p re s su re  A p ( r )  within the fluid is obtained from equation ( 3 . 1 )  by 
subtracting f rom it the right-hand side of equation (3 .2)  se t  equal to zero; 

he re  making u s e  of the continuity equation += E ,  we obtain 

The equation of motion of the 

Separation of the variables R and R yields the. condition 

r Rs 

(3 .3 )  

If we move f rom the boundary of sphere R along its radius, the p re s su re  

will first increase,  attain a maximum at point 4 = and then, as R / r  
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R decreases  fur ther ,  will decrease  tending to zero,  a s  

We note that the distribution of p re s su re  Apl along r does not depend on 
the direction of velocity R .  

tion of formula ( 3 . 3 ) ,  we obtain 

-+ 0 when r +a. 

Omitting the restriction that A p ( R )  = 0 and proceeding a s  in the deriva- 

(3 .4)  

The positive o r  negative pressure  within the sphere propagates through 
the fluid a s  R I r ,  and positive p re s su re  Ap, ( r )  (obtainable from (3 .3)  by 
substituting into i t  velocity R ,  corresponding to  the actual motion of the 
boundaries) is everywhere added to  it. The pressure  distribution is 
depicted in Figure 2 5 ,  where 

r 0 2 3  5.0 75  10.0 - r 0 2 3  5.0 75  10.0 - 

FIGURE 25. 

3. Equipotential surface 

Let u s  assume that potential cp on a spherical  surface of radius r,(t) 
d r .  remains constant, the absolute velocity of this surface is V, = 

the velocity of fluid particles at it is vQ In o rde r  that potential 

cp = - - at sphere r,, (I)  remains constant, it is required that the condition 

= r w  and 
3 RR' 
d, = I?. 

RR' (0 

9 = -  
df '(0 

' 0  
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be  satisfied, whence, using equation ( 3 . 2 ) ,  we derive 

This expression corresponds t o  Theorem XVI i f  A p ( R )  = 0. Under this 
condition the equipotential surface which is infinitely close to the f r ee  

surface - + 1 , propagates in the same  direction a s  surface R ,  but at 

a velocity equal to  one half of R .  
ra te  of propagation of the equipotential surface is equal to  the fluid 

velocity at  this surface provided that (+) = 2; if 2 >'a, the ra te  of 

r; ) 
When moving by inertia ( Ap ( R )  = 0) the 

1 3  

FIGURE 26. 

4. Kinetic energy 

propagation of the corresponding equi- 
potential surface w i l l  be higher than the 
particle velocity at the surface.  

The potential (o ( R )  = - E; conse- VF 
quently, a s  the sphere expands by inertia,  
its absolute value decreases.  
imagined that free surface R overtakes 
the equipotential surface and "engulfs" 
i t ,  with the potentials of both surfaces 
becoming equal at the time of "engulf- 
ment ." The velocities of the equipotential 
surface and of the fluid a s  a function of 
r l R  are shown in Figure 2 6 .  

It may be 

The kinetic energy for the entire fluid can be calculated either by 
direct  integration with respect t o  spherical layers ,  o r  f rom (2.10): 

T = - $- q (R)  RR'do = 2npRSR'. 
4n 5 ( 3 . 5 )  

The spherical coordinate r of each particle is determined from the con- 
tinuity equation r3 - R3 = const. Consequently, the entire fluid mass  can 
be  treated a s  a system of material  points with holonomic constraints, 
with radius R serving as the generalized coordinate of a system with one 
degree of freedom. 

The 
Lagrangian equation of the second kind for generalized coordinate R has 
the form 

W e  denote the generalized force referred t o  coordinate R by Q H .  

( 3 . 6 )  
d dT dT 

dt  & dR - Q ~ -  _ . _ _ _ -  

Substitution into formula ( 3 . 6 )  of the expression fo r  the kinetic energy 
f rom (3 .5)  yields the equation of motion 

4nRap(+ R2 + RR ) = 4nR2Ap ( R )  = QR ( 3 . 7 )  
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The generalized force has  thus been found to be the total excess pressure  
at  the inner boundaries of the sphere;  naturally, equation ( 3 . 7 )  is identical 
with equation ( 3 . 2 ) .  

If an adiabatically expanding gas  is held at I = 0 within a sphere with 
R = R ,  and R = 0 ,  then the internal pressure  will be  defined by the adiabatic 
equation p R 3 ~  = p , R P  with index x .  Since V, = R and dR = k d t ,  integration 
of energy equation (2.12)  for  a weightless fluid (U = 0)  yields 

R 
. 2  

R' = p 1 {pl ( % ) 3 x  - p,) R*dR. ( 3 . 8 )  
R, 

Substitution of $ f rom ( 3 . 8 )  and of A p ( R ) = p , ( ~ ) 3 X -  po into equation ( 3 . 4 )  

gives the pressure  distribution within the fluid at each point r for given R. 

CAVITATION IN JETS 

5. Two-dimensional expansion of a fluid annulus 

1,et us imagine a two-dimensional flow when the region occupied by the 
fluid is bounded by two concentric c i rc les:  an inner c i rc le  with R, = R,( f )  
and an outer c i rc le  with R * = R b ( f ) .  

We denote the distance from a particle to  the center by r = r (0, where 
R , < r  <Rb;  the pressure at the inner and outer boundaries are designated 
respectively by pa and p h ,  and p b  - po by Ap. The volume of fluid between 
particle R, and r remains constant: hence 

1 )  - Dt (Iz - R:) = 2 ( r r  - R, R,) = 0, 

whence ; = d,R, and the potential difference is expressed as 
r 

r 

v(r)-v((R,)= [ ; d r = R , R , I n L .  
Ro 

ii, 

Substitution of the expressions for potentials and velocities into equa- 
tion ( 2 . 5 )  yields an expression for the pressure  at  any point of the fluid: 

(3 .9)  

The kinetic energy of the ent i re  fluid at t ime t is calculated most 
simply by integration along flow tubes ( see  formula (2 .11 ) ) :  

(3.10) 

If velocity I& and pressure  difference A p  are finite, then 

P,, - P o  R 
{ ~ - * R i ( l -  -$-)I+ decreases  without l imit  as R, 2 - m .  Hence, 

In - Kl 
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when the fluid extends t o  infinity ( R b + w ) ,  while inner boundaries R. have 
nonzero velocity Ra, then f o r  an arbi t rary va!ue of A p  the expansion of the 
cavity is governed by the expression R ,  R, + Ri = 0.  Solving this equation 

gives R,R, = const. 
Ra 

energy, also tends to  infinity, since In + OD. Hence no finite externally 

applied p res su res  operating over a finite t ime a r e  able to  change the pres- 
s u r e  at the inner boundaries of a cylindrical cavity in an infinite fluid. 

R It follows from (3.10) that if  2- +-, then T I  the kinetic 
R 
43 

6. Motion of a thin fluid annulus 

W e  denote the annulus thickness by 6 ( 6 = R b - R o ) ,  and assume that ratio 
WR, is very  small .  
derive the continuity equation for the entire annulus i n  the form S =  R6 = const. 
The p res su re  difference Ap = p b - p a  at the boundaries is found from (3.9) to 

be * = - R 6 .  

approximate equation of motion for the annulus, 

Retaining t e r m s  containing 6/R to the first power, we 

Elimination of 6 from the last  two expressions yields an e 

R+* R e o .  (3.11) es 

Let us consider a circular  cone with small  vertex angle - p, placed 

with i ts  longitudinal axis symmetrically into a thin jet of diameter d and 
velocity V, (Figure 27) .  Then a thin annular jet appears past the base of 
the cone and, if  the internal pressure  is lower than the external pressure,  
it will form a thin-walled cavity. Cavities of this kind a r e  in fact some- 
t imes  observed: in the rear part ,  where the jets merge, the flow is no 
longer potential, and gas bubbles a r e  expelled from this par t  of the cavity, 
with the result  that the p re s su re  within the cavity is lower than the outside 
pressure.  

- 
x a 

FIGURE 27. 

Each length element d x  of such a cavity can, t o  a known approximation, 
be treated as a thin cylindrical annulus, the motion of which in the radial 

direction is defined by the equation 8 + 2 R = 0 with the initial conditions Qs 
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I 

R = R, 
. , where R, is the cone base radius, while R, = Vsin  5 -(3' The R = R, ( I '  

origin of the longitudinal axis of symmetry ( x  axis) can be placed at  the 

center of the cone base, in which case t = L approximately, since 

cos (% - B) = I ,  and the absolute velocity along the outer surface of the 

jet is constant by Bernoulli 's equation. It follows from the continuity 

equation that the a r e a  is S= T. da 

u = 6, solving the equation of radial motion of the annulus and substituting 

the above quantities, we can derive an approximate expression for the 
cavity contour, 

V 

Denoting the cavitation number by 
26 

(3.12) 

where R ( x )  is the inner radius of the cavity, while the outer radius R 
the cavity can be found by calculating 6 from the continuity equation 

2 d  = 2nR6 =: d2 .  It is clear  that formula (3.12) was derived by neglect- 

ing the difference in the tangential velocity at the inner and outer boundaries, 
and, consequently, this conclusion is suitable only for low u and sha rp  
cones; here  equation (3.12) cannot describe correctly the shape of the 
boundaries in the trail ing part of the cavity, where R / V ,  is no longer a 
smal l  quantity. 

consideration must be given t o  gravity forces,  which in this case is 
relatively easy. 
annulus is treated a s  being independent of the longitudinal drift of this 
annulus and from these considerations t ime t is expressed in t e r m s  
of I .  Denoting the velocity at the cone base by V, and retaining the 
origin of the x axis at its previous location, we obtain from the free-fall  
equation 

6 of 

If the x axis is vertical  and the velocity within the jet is low, then 

In o u r  theory the radial expansion of an elementary 

Hence 

++cos(2kG[f-- 112). (3.13) 

Equation (3.13) reduces to  equation (3.12) i f  V, -. 00 or i f  the Froude 
V V numbers 

of the fluid also when the axis of the cone is oriented arbi t rar i ly  relative 
t o  the t e r r e s t r i a l  vertical .  
degree of accuracy) the above principle of "independence of expansion" 

and -L a r e  high. It is not difficult to determine the motion 
?3 f i x  

For this it is possible to  use (with the same  
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of each t ransverse layer  of the fluid for  its longitudinal motion. It is 
evident that the center of gravity in a gravitational field will move in 
space in the same  manner as a material  point with initial velocity 9,. 

7. Drag and the reentrant jet 

The forces  acting on a cone streamlined by a thin jet and the diameter 
of the reentrant jet can be calculated by means of the energy and momentum 
theorem. 
the inner boundary of a cavity, when the cavity is considered in its absolute 
motion relative to a stationary fluid column, will be a steady surface,  
which cannot be closed. Hence, a reentrant jet, whose cross-sectional 
a r e a  is denoted by F,, must be directed from the trailing end of the cavity 
t o  its leading end. 

According to Theorem V, the relative particulate velocity Vs  along the 
inner boundaries is constant. However, since by assumption p res su re  pr 
within the cavity is lower than pressure  po in the free  flow, the relative 
particulate velocity VI = V ,  at the inner boundary is higher than the particulate 
velocity at the outer boundaries, where V, = V, ,  i. e., it is equal t o  the 
velocity in the jet (or  equal in magnitude to  the transport velocity in the 
absolute motion of the cone relative to  a stationary fluid column). 
V k  can be obtained from the Bernoulli equation constructed for a s t ream-  
line passing through a f a r  point ahead of the cone and  along the cavity 

boundary; it is found that po-  pk = 

absolute relative velocity at any point in the flow is VI = V ,  + u, where v, is 
the additional velocity; at the inner boundaries us = vh= V,- Vo=f aV,. 

Figure 27),  moving the bases  of this surface far  ahead of the cone and f a r  
back f rom the cavity. It is clear that the kinetic energy of absolute motion 
of the fluid (column stationary, cone in motion) within control surface 
I - I l l  increases  only due t o  energy transport  by the jet toward the cone. 
Denoting by X the force which overcomes the drag, we obtain from the 
energy equation 

A s  t o  the reentrant jet we note that, according to  Theorem X, 

Velocity 

Qvl vi (F - , )or v k  = YO-. The 

W e  now draw control surface I - I l l ,  associated with the cone (see 

where eVkFE is the mass  of fluid passing per unit time through the cross-  
sectional area of the reentrant jet, i.e., through surface I I  in the direc- 
tion of the cone, while V ,  + v k  is the absolute velocity of these particles, 
equal to the sum of transport  velocity V ,  and the relative velocity V k ;  the 
jet moves in  a region with p re s su re  pr < p o ,  which results in the appearance 
of the t e r m  F C V k ( p o - p r ) .  

Vk and thus derive the cross-sectional a r e a  of the reentrant jet, 
We now substitute in the last equation the above expression for velocity 

(3.14) 
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It is assumed here  and subsequently that the reentrant jet does not 
reach the base of the cone and is somehow removed from the flow region. 
Actually, however, it breaks up at the r e a r  part of the cavity into droplets, 
which a r e  deposited on the inner boundaries of the cavity and a r e  car r ied  
away from it by the flow. The loss  of gas  bubbles f rom the cavity is 
associated with this  breakup and ejection f rom the cavity of sprays from 
the reentrant jet. Hence the flow shown in Figure 2 7  can actually be 
obtained at relatively low V ,  i f  gas is continuously supplied to the cavity. 
But then the jet in the r e a r  part of the cavity is replaced by foam which 
is carr ied away by the flow, and the flow in the r e a r  par t  of the cavity is 
no longer potential due to  mixing of the gas  with the fluid. 

Applying the momentum theorem to the relative motion of the fluid 
through control surface I - I I  on the assumption that the jet is removed 
from the cavity within surface I1 - 111 and exerts  no force on the cone, 
we can derive an expression for the drag of the cone. In fact, denoting 
the c ros s  sections of the control surface by F1 = F I I ,  the flow c ross  
section by F; and F; and the maximum (frontal) c ros s  section of the 
cavity by S I ,  we have 

The pressure  integral in plane 11 is composed of pressure  p a ,  acting 
on a r e a  F , ,  - F; ,  -Sk, the pressure  integral over the jet c ros s  section, 
which is obtained from the Bernoulli equation 

and, finally, the pressure  pk in the cavity, acting on surface S, = nR:. 
Substitution of these expressions for calculating the pressure  integral 

together with the continuity equation F; V, = { (V, + u,) dF into the preceding 

expression for the drag X, we obtain the final expression for this la t ter  
quantity: 

";I 

(3.15) 

We note that the result expressed by equation (3.15) does not apply only 
to  the case of a cone placed in a thin jet, but a lso to  the case  when the 
fluid within the cavity extends to  infinity ( d  --+ a). 

tion, that the additional velocity u, varies  linearly f rom the value of u, at 

the inner boundary to zero at  the outer boundary. 

where 6 is the distance along axis R f rom the inner boundary to  some 
point inside the jet. Substitution of this velocity distribution into the 
continuity equation yields 

To evaluate the integral in formula (3.15) we assume,  a s  an approxima- 

Thus v, = u, (1 - J ,  d 
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whence 

The integral in (3.15) can be expressed approximately as  
A 

The drag  is 

evi n@ a* x ' s , @ o - P p , ) - ~ ~ ~ ~ ~ .  

The drag can also be estimated approximately by drawing the r e a r  part 
of control surface I - IV in the immediate vicinity of the cone base. Carrying 
out elementary calculations and retaining t e r m s  which a r e  a function of u 
only to  the first power, we derive the approximate expression 

(3.16) 

The drag of the cone is expressed approximately in  the form 

where + - p = p - O .  

Figure 27 shows the flow of a jet of weightless fluid past a c i rcular  

cone for the case  (q - 8) = 0.4, cavitation number u = 0.01, and d = 2 R o =  

= 1 cm.  
reentrant jet is expressed by (3.14). F r o m  the preceding expression for 
X the drag coefficient re fer red  t o  the cone base  a rea  nRi will be, for the 
problem at  hand, 

The cavity outline was calculated from (3.12), while the 

The boundary segments calculated from the above expressions a r e  shown 
by solid curves  in Figure 27. 

8. General t reatment  of the energy 
and momentum equations 

We consider the case 6 
+ 0 and u + 0. However, the flow still remains 

a s  shown in Figure 27, i. e., the presence of a reentrant jet. 

equation k'+ * R = 0 of the radial motion of the annulus becomes asymptoti- 

cally exact. 

Then the 

eS 

Multiplying both t e r m s  of this equation by 2nk& and making 
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use of the fact that 2nS = 2nR6,  we have 

The f i rs t  t e r m  represents the t ime derivative of the kinetic energy T of the 
fluid per unit length of cavity generatrix,  while the second t e rm,  correspond- 

ing to the expression d_ ( n R * A p )  = %, can be regarded as the derivative of 

the potential energy U, also referred to  unit length of the cavity generatrix.  
Hence the equation of expansion of the annulus is equivalent to the energy 

equation in the form d (T + U') = 0 ,  or  T + U = const for any annulur ele- 

ment of cavity length. 
distance d x ,  provided that the fluid column can be treated a s  stationary, the 
force overcoming the drag performs work X d x  and an element of annular 
cavity with length d x ,  containing energy ( T  + U) dr, moves away from the 
base plane. Consequently, T + U = X. The instant when the annular ele- 
ment reaches i ts  maximum expansion and k = O  corresponds to the f i rs t  
t e r m  of (3.15) f o r  the frontal  c r o s s  section. Upon subsequent compression 
the energy contained within the fluid annulus also remains unchanged and is 
t ransferred to the reentrant jet in the r e a r  part  of the cavity. 

T, , ,  and the momentum in the direction of absolute cone motion by B,, we have 
for any subsequent time t 

d l  

dt 

When the cone moves in i ts  absolyte motion through 

Denoting the kinetic energy of absolute motion of the fluid for t ime to by 

(3.17) 

It was pointed out above that when the cone moves relative to the stationary 
fluid column in the crosshatched part of the volume (see Figure 27), the 
energy and momentum do not change, and the increments in T and R occur 
due to  the reentrant jet moving into the cavity. If the absolute velocity of 
the cone is 
then we have an added mass  QFG of the fluid in the jet, whose absolute 
velocity is 2;. Thus 

= V, = const and during t ime r - to i t  t ravels  through distance X ,  

B = Bo + c$,x ( 2 i ) .  

These equations yield the identical result ,  valid for any uniform motion 
of a body relative to a stationary fluid: 

T - T o  = ( B  - B o )  X .  (3.18) 

where the momentum vector B is directed as velocity ;; here ,  from the 
condition of axial symmetry,  B is the principal vector of the absolute 
momentum of the fluid. 
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PLANING OF A PLATE 

9. Steady free boundaries 

Steady planing and developed cavitation can se rve  as examples of flows 
with steady f r e e  boundaries. 
equivalent t o  the formation of a f r ee  boundary behind a planing surface in 

The formation of a cavity behind a body is 

the sense that new fluid particles move 
from the body edge to the free  surface.  
First we consider in detail the proper- 
t ies  of f ree  boundaries consisting of the 
same particles, which a r i s e  ahead of 
planing bodies ( F i g u r e  28). 

Retaining the notation of Section 4, 
Chapter One, we restrict  ourselves to  
the case when the transport velocity P, 
has the same  direction a s  the undis- 
turbed boundary. The absolute velocities 
of particle 5 along the normal and 
tangent to  the free  boundary will then 
be u, = V,s ina  and u, = V, (COSU- l ) ,  where 
a is the angle between s and the x axis, 
i f  it is assumed that I/, is ic the positive 

FIGURE 28. x direction, which is also the positive 
direction of s. According to  Theorem VI11 
for a steady f r ee  boundary the distances 

between particles at the boundary remain constant; consequently 
s,(&) - sl(E,) = & - 6 ,  where 5 is the abscissa of particles at the undisturbed 
free surface.  

X 

--. pycT;/x, 
,a/s x 

x(C,,Ol=€ 
A(( , t l  

The potential difference between particles 5 and E, is defined a s  

If it is assumed that cp(&, f) + 0 a s  €, + ~3 (consequently, x and s separately 
tend to  infinity), and also that s s - x 2  + 0, the preceding expression yields 

(3.19) cp (E. 0. - v, ( x  - E), 
where x is the abscissa of particle 5 at t ime t ,  while 5 is the abscissa of 
the same  particle at t ime t = 0, i. e . ,  at the t ime when the particle was 
still at infinite distance from the planing surface.  
simply the absolute travel of particle 5 along the  x axis. 

ahead of a planing plate (in the two-dimensional case) a r e  approximately 
the same  a s  those ahead of a corresponding lifting vortex. 
i f  at the t ime under study the vortex coincides with the origin of the 
stationary coordinate system x ,  y ,  then as x + co 

Consequently, x - E is 

It is known that normal velocities at a f r e e  boundary at large distances 

Consequently, 
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I 1 However, dt = - e; hence formula (2.7) yields::; 
vt 

I 

I 

, 
0 I Under these conditions the rise in the level of the free  surface i s  y, z= J u d t ,  

and consequently it is logarithmically infinite. 
span formula (2.7)  is applicable directly in the vertical  plane of symmetry.  
But for any three-dimensional flow the reduction in velocity u with increasing 

distance from a planing plate occurs more  rapidly than !-, and therefore 

everywhere at a f ree  surface from the point where it s t a r t s  curving the 
potential of any particle is positive and finite, while the level r i s e  yt can 
be a s  large as desired.  

Fo r  a plate with finite 
I 
, 

, 

10. Kinetic energy 

In the two-dimensional case the kinetic energy of the fluid in any region 

is obtained from the expression T - - SJCP g d s  ( see  Section 7, Chapter Two). 

If T is referred to  a layer  of unit thickne'ss (along the z axis),  in our  case 

-=_  2 u, and, in addition, s inads  = - d y ;  hence, substituting the above values 

of u, and cp into the expression for T ,  we obtain $ d s  = -V, sinads = VJy. 

Integration from s to s + OD yields 

(3.20) 

In keeping with the meaning of integration in (3.20) one should, at  some 
instant of t ime,  integrate the particle t ravel  ( x -  E )  = /cy.) along the free 
surface.  However, the steady state of the f r ee  surface means that the 
t ra jector ies  of all the particles a r e  identical, hence geometrically the 

integral 

segment of the y axis drawn from the s t a r t  of the trajectory,  and segment 
x - E  connecting point yr,  
with the y axis. 
which this region is shaded. 

a closed contour, since w e  rest r ic ted ourselves in deriving (3.20) to  
integration only along the f r ee  boundary from particle E to  5 = s -+ CQ. 

The interpretation is that (3.20) expresses  the kinetic energy of the fluid 
within a region bounded by surface cp = 0, f ree  surface s extending f rom 
particle E t o  infinity, and a streamline (in absolute motion), which a r r ives  
at particle E and intersects  the plane 
shaded by continuous and dashed l ines.  

(x-&)dy is the a r e a  bounded by the trajectory of particle E ,  i 
5.  which is the instantaneous location of particle E ,  

The geometric construction i s  shown in Figure 29, in 

To calculate the energy T, expression 9% should be  integrated over 

= 0. In Figure 29 this a r e a  is 

In general the moving and stationary coordinates a re  related by the expression x - x - V , t ;  since here 
x - x ' ,  we have dropped the prime of x in the integrand. 
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FIGURE 29. 

The particle t ravel  x(E) - 5 decreases  with increasing x' not slower than 
1 - ~ , *  ; the surface r i s e  y, is proportional to Inx'. Hence the integral in (3.20) 

1 decreases  a s  with increasing x'. Consequently, the kinetic energy of 

fluid particles in the surface region is always finite. 

11. Stagnation point 

The excess p re s su re  at the stagnation point is Apk = P",'; the velocity of a 
2 

fluid particle situated at the stagnation point relative to the planing surface 
is zero.  Consequently, the same particle Ea is always located at the stag- 
nation point. Here the absolute velocity ;&, 0 of this particle has  the 
same direction and magnitude as the transport  velocity Ve.  All the particles 
at the planing surface which do not coincide with the stagnation point move 
away from i t .  
point a r e  identical. 
region of the spray  sheet, have absolute velocity u (k. t )  > o (Ek, t ) ,  while 
for particle Ern,, located in the main flow, u(E,-. . , t)  < u(Ek. t )  (Figure 30). 

The normal velocities of particles close to  the stagnation 
Hence those particles E , ,  which are located in the 

The p res su re  at the stagnation point is maximum and $ = 0. Hence 

according to  ( 2 . 5 )  the ra te  of growth of the potential of particles infinitely 
close to  the stagnation point is 

Consequently potential (~(5,~ t )  for particles Ec increases,  and for particles 

'p(Sk. 0 = 0. 

E ,  of the main flow the potential cp(E,,t) decreases .  
D at the stagnation point 

the free  surface Ap- 0, while u is a quantity of the same o rde r  of magnitude 

F o r  particle 5, located 

For  a particle at infinity ( 5  -+a), at 

D ' hence as E -+ 00 we also have ( ~ ( 5  -+a. r) = 0 .  It follows that the 

rate  of increase in the potential difference between the stagnation point 
as -t; 

51 



and a point at infinity is ze ro .  Hence ~ ( 5 ,  t ) - - ( ~ , =  const and, with the same  
justification a s  q,+ 0,  it can be assumed that T(&, 1) = 0.:: 

/ . 
" 
-/, 1 ,  I ,  '"e 

FIGURE 30. 

Therefore surface v= 0 ,  ahead of a planing plate bisecting at infinity 
the distance between the instantaneous position of the free  surface and the 
undisturbed level, is always located above the undisturbed level and 
approaches the planing plate at the stagnation point, where the excess 
pressure  has a maximum. 

12. Lift and drag 

We assume that the plate is planing at velocity V,, directed along the x 
The angle of axis which coincides with the undisturbed level of the fluid. 

attack of the plate is denoted by a. 
determined from various points of view. 
equation that the increment in the kinetic energy of the entire fluid is 
equal to  the work of internal forces.  
t ic energy of fluid particles changes only due to  the sliding off of a spray  
sheet with thickness 6 from the leading edge of the plate. Neglecting the 
p re s su re  gradient within the spray  sheet and making use of the fact that 
the relative velocity at the f ree  surface is V , =  V, (Theorem VI), we find 
that the mass  of fluid leaving (per unit t ime) a unit plate span at the 

forward edge is Q ~ V ,  and that it c a r r i e s  away energy Q ~ V ,  T .  Velocity 

ut is the absolute velocity of particles at the forward edge of the spray 

The normal force P, on the plate can be 
It follows from the energy 

In steady motion of a plate the kine- 

4 

' This assertion is quite rigorous if we treat steady planing as the l imiting case of self-similar entry of a plate 
into the fluid, when the velocity is directed a t  angle 0 to the undisturbed level. Then ,  as 8- 0,  there 
will exist (according to the condition of self-similarity) a single partlcle F, for which 'pk = 0 at  t ime 

r - 0,  and condition Ap - -$- = 0 is always satisfied. 
ev' 

Hence for a l l  f > 0 we have 'p (E,, 1 )  P 0. 

52 

17 



sheet; consequently v, = ~ V , C O S  $ 
( F i g u r e s  30 and 3 1 ) .  

energy equation - = P, sin aV, = ~ t i v  - 
we derive the expression for  the 
normal force 

F rom the 

dt e 2  
d 7  4 

FIGURE 31. 

p n  = e6Vj ctg . ( 3 . 2  1) 

Formula (3.2 1) can be regarded 
as the generalization of Zhukovskii's formula (for a plate placed perpen- 
dicularly to  the flow), that the pressure  force on the surface is e Q V , ,  
where Q is the fluid volume carr ied away by the spray sheet per second. 

The 2 If a = i; and Q = 6 V , ,  then ( 3 . 2 1 )  expresses  Zhukovskii's result .  

analogy established by Wagner between a planing surface and an airfoil 
yields the expression for the l i f t  

Qv: Y=nsina- f .= 2 P,COSU,  

where L is the wetted length ( see  Figure 31). 

sion with expression ( 3 . 2 1 )  shows that T =  

Comparison of this expres- 
6 a* i f  a+ 0 .  

Formula ( 3 . 2 1 )  can also be obtained from a Lagrangian equation of the 
Suppose initially the kinetic energy of the fluid in the entire 
The plate w i l l  move during t ime t through a distance x =  V J  and 

second kind. 
region is To 

energy To will be increased by the amount @ x * .  

V ,  = x, the energy at t ime t wil l  be T = To + ~ S x X 2 2 c o s ~ ~ .  The generalized force 

referred t o  the x coordinate is X = P,sina. Substitution of the above expres- 

sions into the Lagrangian equation -.--- aT - - X again yields ( 3 . 2 1 ) .  

note that the above applies only to steady motion, when x = 0 and a = const. 

corresponding force was Pm1, and then during t ime interval t , - t ,  the plate 
acquired the velocity x = x s ,  then with t ime, as t ,  < t -+a, i f  x, = const, the 
force will acquire a new steady value P, -+ PmZ,  which is a lso obtainable from 
( 3 . 2 1 ) .  The transition from one steady motion to another involves a change 
in  the kinetic energy of the entire fluid, and not only of the energy in the 
spray  sheet. 
obtainable from ( 3 . 2  1) and cannot be calculated from the Lagrangian equa- 
tion, since the constraints for the particles will  no longer be holonomic. 

The ideal fluid flows examined in this chapter can be  calculated exactly. 
Steady planing of a flat plate w a s  already studied in  great detail by confor- 
mal mappings. An analogy between planing and the motion of an airfoil 
was established by Wagner; the problem w a s  developed further by Sedov. 
However, the equations used he re  a r e  more general  and can be used in 
many different cases ,  in particular those for which an exact solution 
cannot be obtained. Comparison of general relationships for a flow which 
can be  calculated exactly in a particular case allows one to obtain a 
general  idea of the flow pattern and to  construct an approximate computa- 
tional scheme for another flow which cannot be calculated exactly. 

d 
Since v, = 2 V , c o s q  , while 

W e  
.. dt dx  

If the plate moved before t ime t at constant velocity 4 = 4, and the 

Hence, during such a transition force P, will no longer be 
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Chapter Four 

SYMMETRIC IMMERSION OF A BODY INTO A FLUID 

In studies of high-velocity entry of bodies into water it is often possible 
to t rea t  water as an  ideal and incompressible fluid. However, in all cases, 
even on the assumptions which are made, exact calculation of the forces  and 
configuration of free boundaries are found to be virtually impossible. It is 
hence very  important to use  relatively simple examples to  examine the 
details  of these kinds of flows, clarify the principal governing relationships, 
and work out effective methods for  theoretical estimates which would agree  
with experimental results.  

The entire immersion process  can be subdivided into three  stages:  f rom 
initial contact to  separation of the spray  roof region from the body surface;  
f rom spray-root separation t o  cavity formation; and steady cavitating flow. 
In the present chapter we consider the f i r s t  and second stages of immersion 
of symmetr ic  bodies anc profiles, which possess  the property that initial 
contact with the free surface occurs  a t  a single central  point. 

1. Impact of buoyant bodies 

Problems involving impact of buoyant bodies a r e  stated as follows. It is 
assumed that the fluid is ideal, incompressible and fills some par t  of the 
space bounded by the specified free surface s. A body (or contour in the 
two-dimensional problem) whose surface s, is also specified floats a t  the 
fluid surface.  Before impact the body and the fluid are at  res t .  Impact 
means imparting to the body a velocity 
A t  - 0  by applying t o  the body an infinite force  P -+ 

i n  motion from rest by normal  pressures ,  the motion is potential. As is 
known, i f  the Cauchy-Lagrange integral  

over  an infinitesimal t ime interval 
Since the fluid is set  

is integrated over this infinitesimal t ime interval A t ,  i t  is found that the 
integrals of t e rms  which retain finite values within the integration interval 
drop out as A t  +O, and as a resul t  one der ives  the expression 

E -7 pdt = - p i ,  
0 

where p, is the impulsive pressure .  

54 



1 

At the free surface s we have pi = 0;  consequently, following the impact 
the velocity potential cp at i t  is equal to zero (or to a nonzero additive constant). 
The fluid velocity normal to surface sk a t  the body surface after the impact 
should equal the normal  component of the body velocity, and therefore the 

boundary condition a t  surface sk is $ = e,,v. At infinite distance from the 

body the fluid motion vanishes; hence grad cp -t 0, and velocity potential 
g. tends to  zero or some constant value. 

The problem of impact on a buoyant body thus reduces to a boundary- 
value problem of a mixed type, when the value of potential 'p is given over  

a par t  of boundaries S ,  while the value of 2 is given at a par t  of boundary s k ;  

boundaries s and sk are known, and we require the potential function 
satisfying the Laplace equation Acp = 0 within the fluid-occupied region, and 
boundary conditions a t  surfaces  s and s k .  Methods for solving problems of 
this type are known and have been incorporated in all  courses  on hydro- 
mechanics; a t  present a l a rge  number of particular results were obtained 
for two- as well as three-dimensional flows. Hence, without dwelling in 
detail on the theory of impact of buoyant bodies, we shall note only the 
principal results.  

In all these cases the ensemble of impulsive pressures  applied to  the 
fluid by the surface of the body, reduces to the principal momentum vector 
B and the principal vector of the impulsive momentum, i. e., the vector of 
the moment of momentum [angular momentum] A of the fluid, expressed in  
t e r m s  of induced inertias,  the components of which can have different values 
along different axes. It is known that reduced masses  and moments of 
inertia depend on the shape and dimensions of the body, and on the form of 
the free surface (if the body floats), and are proportional to the density e of 
the fluid and are independent of the velocity following the impact. In 
particular,  for vertical  symmetric impact (along the y axis) of a bupyant 
body E, = 0, fi = 0,  while B ,  = miVg and the kinetic energy of the fluid is 

T = m' 5 = For a plate of width 2c, aligned along the x axis, the 

induced m a s s  pe r  unit length z on impact in the y direction is m ; =  GQC~; 
for  a disk with radius c in  the x ,  z plane on a like impact we have 

m;= $e.?; the values of induced inertias for other  cases can be found 

in  the l i terature  and will be subsequently utilized without proof as known 
results.  

In 1952 Gurevich /5 / ,  as well as Berman, Parkhomovskii and others, 
solved a number of problems involving impact of profiles in developed 
cavitated flow. Solutions for  two-dimensional flows a re  found by means of 
conformal mappings. 

From the standpoint of mechanics these problems are equivalent t o  
problems of impact of a body on a n  infinite fluid, or of a body floating at 
the free surface,  the only difference being that even before the impact the 
free surface assumed a shape produced by cavitated flow. In these cases  
the induced m a s s  found from solving the impact problem cannot be treated 
as a universal constant. The continuous motion of a profile or of a body 
with developed cavitatian behind i t  cannot be constructed by superposition 
of infinitesimal, but infinitely frequent, impacts. 

B J , .  u 2  
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It is easy to show that for  a rb i t r a ry  motion within an  unbounded region of 
a closed surface, i t  is always possible to draw on such a surface a closed 
curve on which the velocity potential would be equal to i t s  value a t  infinity 
(for example, zero). An equipotential surface extending to infinity can be 
drawn f rom this curve a t  the body surface and this equipotential surface can 
always be treated as the free surface in  the problem of impact by one-half 
of the body. In this sense problems with impact of a buoyant body are 
equivalent to problems of the motion of a body within an  infinite fluid; when 
the buoyant body is impacted tangentially to the free surface, this is 
equivalent to the shifting of one-half of a symmetric body relative to i t s  
other half within an  infinite fluid. 

2.  Immersion and impact 

Comparison between the theory of continuous immersion and impact entry 
of buoyant bodies shows that these two phenomena a r e  entirely different. 
This asser t ion is supported by the following considerations. 

The theory of impact of buoyant bodies ignores the migration of the 
f r ee  boundaries during impact, and hence the potential at  the free boundaries 
during this t ime remains unchanged (in particular,  Q = 0). This motion of 
f r ee  boundaries cannot be neglected in continuous immersion; the velocity 
potentials at  the boundaries differ substantially from zero and may markedly 
exceed the potential a t  the body surface. 

that the fluid flow ar is ing on continuous immersion cannot be obtained 
instantaneously only by the body impact, even i f  the boundaries in both these 
cases  are the same. This flow forms with immersion of the body and 
contains within i t  implicitly the immersion history. 

impact and for  immersion a r e  different. In the case  of impact of a buoyant 

body T - $VUE,, and consequently Wagner's integral  is 1, P 2T-VBu - 0. 

On uniform immersion this integral is equal to the kinetic energy of the 
entire fluid and determines the drag. The concept of the induced m a s s  on 
immersion of a body a l so  has  a different meaning than on impact. In the 
presence of free boundaries it is impossible to formally construct the 
equation of motion of the body on the assumption of steadiness in the 

frequently used form [(m + m*) V ]  + &p = 0. 

drag coefficient k are  found to be related and depend not only on the 
instantaneous s ta te  of motion of a body with m a s s  m ,  but also on the 
history of this motion. 

Even in  the simplest case of uniform immersion of a recti l inear wedge 
the rigorous mathematical solution of the problem cannot be fully completed. 
The equation of the free boundaries remains indeterminate, and this in  turn 
makes it impossible to formulate the corresponding boundary-value problem. 
But even if the equation of the free surface could be found, difficulties would 
arise in solving the Laplace equation when a par t  of the boundaries has  a 
complex curved shape. The problem in more complicated cases  is even 
more difficult. Hence, subsequently, we shal l  attempt to circumvent these 
difficulties by seeking suitable approximate solutions to problems of this type. 

1. 

2. The fact that potentials at  the free boundaries are not zero means 

3 .  The relationship between the momentum and energy for  symmetr ic  

d The induced m a s s  m* and the 
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CONTINUOUS IMMERSION OF A PROFILE 

3. Uniform immersion of a wedge (Wagner's problem) 

W e  assume that an infinite wedge is immersed symmetrically into a fluid 
(Figure 3 2 ) .  The general  conditions a r e  a s  follows: the fluid is ideal, 
weightless and incompressible,  with density e .  The initially quiescent fluid 
fills the lower half-space x ,  y. z at  y < 0. The coordinate origin is placed at  
the point where the wedge vertex f i r s t  comes into contact with the f r e e  
surface; the depth of immersion is h ,  and the ra te  of immersion is 

= v = const. Since the fluid motion s t a r t s  from rest due to normal  forces, 
it  has a velocity potential 'p at each instant of t ime and at each point in the 
fluid-filled space. A l l  the resul ts  pertain to unit wedge length along the 
z axis. 

l v = i  
FIGURE 32. 

At infinity grad p-+ 0, and it can be shown that the effect of the flow a t  

+ C ,  where MP cos 9 
ra= xl +y'+oo is equivalent to a doublet of the form c p =  -I 

M is a constant. W e  hence se t  the additive constant C equal to zero and 
assume that p +  0 a s  I + - .  At the wedge's solid surfaces the boundary 

condition is !!L = V c a p ,  where 0 is the deadrise angle. dn 

po, the p re s su re  at infinity. The f ree  surface proper i s  in motion and always 
consis ts  of the same fluid particles. 
the tip Oof the spray sheet, is denoted by s.  Then the dynamic boundary 
condition, which follows from constancy of pressure  at the f r e e  boundary, 

is 1 = 0 or e$= = 0, where U is the absolute velocity vector a t  the boundary 

( e ,  and g, a r e  unit tangential and normal vectors). 

dynamic condition is reduced to  the form $ = u, =, where a is the angle of 

rotation of the f r ee  surface. The kinematic conditions a t  the f r ee  boundary 

reduce to  two equations (for the relative elongation 

The pressure  p at each point of the f r ee  surface is constant and equal to 

The free-surface a rc ,  measured from 

I 

- 0 ;  

- -  
Since u = e,u, + e,,~,,, the 

Du Da 

I 

De au = e, and for  the 

I 



r a t e s  of rotation = e,$) of a boundary segment, consisting of the same 

particles.  These conditions a r e  general  and valid for any free boundaries; 
they will subsequently be used. 

( for  example h )  is determined only by the scale.  
boundary t ranslates  while remaining s imilar  to itself. Hence in polar 
coordinates r .  8, for each 0 = const a point on the boundary is transported 

along radius r at constant velocity V ,  = f = V ,  while the arc length of the 

f r e e  surface up to this point i nc reases  a t  the r a t e  f, which is also constant. 

Obviously, the velocity of different fluid particles which a r r i v e  a t  different 

t imes at  point f = const and 0 = const is the same. Hence, i f  u, = us (s, t ) ,  the 

dynamic boundary condition for  a point a t  the free surface propagating along 
au 

r in a given direction is $ = $, which is the f i r s t  kinematic boundary 

condition (see (1.6)). Consequently, the distance along the free surface 
between individual particles remains unchanged throughout the motion 
(Theorem XI). 

Denoting the individual par t ic les  of the free surface by their  initial 
abscissas  5 a t  the undisturbed surface,  we have E = s. The absolute velocity 
of a particle a t  a self-similar point A is 

of the velocity is V, = $, and this velocity is directed toward the spray-sheet 
tip (Figure 3 3 ) .  

The self-similari ty of the flow is obvious, since the l inear dimension 
Consequently, the f ree  

= P, + v,; the absolute magnitude 

U 1  t - t ,  2 

ii r- 
FIGURE 33. 

The potential and s t ream functions a t  the free surface are given by 
?e= ar S .  
d s  u, = v,cm (IS) - v, = -.--- t ds L ’  
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Integration is car r ied  out for  a fixed t ime t .  At infinity, where 
r = s +  w as U, + 0, it is assumed that T,~, = 0, which yields 

(4.1) 

The s t ream function a t  the boundaries will be treated a s  positive i f  

velocity 2 is directed along the inward normal; the s t ream function at  the 

f r ee  boundaries is negative. At the f ree  boundary 

1 -  
d$ = - u,ds = - 7 sin ( r .  s) ds; 

A rde 2F since s in  (r .  s) = x, we have $(s, f )  = -T, where F is the a rea  of a curved 

sector ,  bounded by free-surface a rc  s and radi i  connecting the ends of this 
a r c  to the s imilar i ty  [homotheticj center. The same expression for  the 
s t ream function is valid a lso for the wedge generatrix s,; hence the 
condition t#(sa. f )  +$(s. t )  = 0 defines the ends of the same streamline. 

The p res su re  at  each homothetic point is 

If f = const and 0 = const, then 

point. 
( A p  = 0)  coincides with the kinematic condition 
force of the wedge on the fluid is P h ( f ) ,  by virtue of the fact that the p re s su re  
at  homothetic points is invariable while the distances between them increase 

in proportion to t ime t ,  we have T =  const. 

condition for  the force: 

and so A p = p - p o  = const a t  each 

It is of importance that the boundary condition at the f r ee  surface 
at t 

= v, + 9,.  If the p re s su re  

pll 

The energy and momentum of the fluid a r e  determined from the preceding 

(4.3) 

It is noteworthy that this yields the condition T = VBh, relating the energy and 
momentum, which i s  in general  character is t ic  for  any symmetric uniform 
immersion. If we would stop the motion at  some instant, while retaining the 
same boundaries a s  for  uniform immersion with a homothetic center, and 
by impacting on the wedge we would impart  to it momentum Bi and velocity 

V ,  then the kinetic energy would beT'=iVBi. At all the f ree  boundaries 

immediately following the impact and u, would then be zero. 

The energy and momentum can also be calculated in t e r m s  of cp and a t  

the boundaries: 
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(4.4) 

Multiplying the second integral  of (4.4) by V and subtracting from i t  twice 
the kinetic energy T, we derive Wagner's integral, thus eliminating integra- 
tion over the solid boundaries: 

Since P ,  - z, while Bh is proportional to t * ,  the derivative has associated 

with it the factor 7: 2 

(4.6) 

Wagner, in  determining the position of the f r ee  boundary by successive 
approximations, used this formula to calculate the drag  of a wedge with 
deadrise  angle 18" and found it to be approximately Ph = 16 neV2h. 

Dimensional analysis formally yields for the drag  the expression 
P ,  = pVhf  (p), however, this theory does not aid in  calculating function f (p). 

4. Small deadrise angles 

It is c l ea r  that 0 < B for  any point on free boundary s, and s o  forp - 0, 
r + E = s. W e  denote by c the distance along the x axis  f rom the homothetic 
center t o  the spray-root point (Figure 34).  Obviously, the rise of the 
spray-root point (at which the tangent to s is parallel  to the y axis)  will be 
equal to c (tgp) - h  - 6, and for all x > c the rise of the free-surface level is 
y, < c (W) - h - 6. 

Y A  

h h 

FIGURE 34. 

If we retain c constant and decrease B until i t  vanishes, then c (tgp) --r 0 
and y, 0 for all x > c ,  since h < c(tgp). Hence a s  p +. 0 the free surface 
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outside the spray sheet is infinitely close to plane y = 0 ;  the boundary 
conditions at  the wedge surface within width f c  and at the f r ee  surface for  
x > c a r e  equivalent to boundary conditions at  a plate floating on the f r ee  
surface and impacted vertically. The difference between these flows 
consis ts  in  the fact that in the case  of a wedge the equivalence to the plate 
does not hold at  the spray-sheet root and a fluid stream, carrying kinetic 
energy and momentum fluxes from the principal r e g i o n  into the spray sheet. 

In order  to determine the energy and momentum, the  entire region 
containing the fluid can be divided into two par ts :  the bulk of the fluid and 
the region of the spray sheet. In the bulk of the fluid, from equivalence 
with impacting on a floating plate a t  fl .+ 0, the kinetic energy of the fluid is 

and the vertical component of the fluid momentum i s  

When 8 + 0 the length of the spray sheet is s, - c ,  while the absolute 
2c velocity of every fluid particle in it equals T .  It is possible to  replace the 

entire region of the spray sheet by an equivalent triangular spray sheet with 
base thickness 6. 
kinetic energy car r ied  by them being 

Tie mass  of the fluid in  two spray sheets is then e&, the 

and the ver t ical  component of momentum is 

CS Since Bh = Bhl f B h l ,  for  g +. 0, we have Bh -. Bhl and P, + nqV T.  

As a result of the fact that T = VB,, for  p -. 0, w e  have T, + TI. Consequently 

6 - + (y. 
The determination of width c is based on the previously mentioned analogy 

with impacting a plate floating on the f r ee  surface. Since the boundary 
conditions for  both cases  a r e  identical, due to the uniqueness of the solution 
of the Laplace equation the velocity potentials at the boundaries will also be 
identical. The potential for a plate of width kc is 

and the normal  velocities a t  the f r ee  boundaries a r e  
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Par t ic le  5 rises above the initial level until, at  t ime t ,  it  reaches the 
side wall of the wedge or, more  precisely,  pas ses  onto the surface of the 
spray sheet, in which c a s e  c = x .  Hence 

(4.7) 

Setting t = t (c), we have df = f d c .  Substitution of the expression for  df into 

(4.7) yields the integral  equation 

t 
dh F o r  a recti l inear wedge x= const while 

Therefor e 

d o n i  
dh 2 tap ---.-. (4.9) 

dh Wagner 1311 regards  function 

and curvil inear wedges. 

centerline of the wedge is 

as purely geometrical for  both recti l inear 

It can be shown by a direct  check that i f  the profile relative to  the vertical  

then integral  equations (4.7) and (4.8) are satisfied provided 

d h 2  4 3 16 - ;;a + a,c + a,;;? + Fa# + + . . . 

These two expressions can be used to find c = f ( h )  for  curvil inear profiles. 
An example is a wedge with straight s ides  a = tg 8 and q, a,, . . ., = 0;  this 
proves the validity of (4.9). 

&=a,c,  f rom which h -a,r. since at the point of initial contact h = 0 and dc 2 

c = 0. If a c i rcu lar  cylinder with radius R is immersed  into the fluid, then, 

as long as rat io  $is very small ,  the a r c  of its circumference can be treated 

approximately as a segment of a parabola provided a, = %. Hence 2 - 4Rh 

and, since we are using the expanding-plate analogy, the vertical  momentum 
component is 

6, - g pc'h - 2nphhR, 

F o r  a profile outlined by a quadratic parabola we have q = qx' and 

I 
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and the drag  at V - h = const is 

(4.10) dB 
P ,  P -$- - 2npRhl. 

Using formula (4.9) and proceeding as before, the drag of a recti l inear 
wedge is found to be 

p ,  - xqhh'(&): (4.10a) 

We note that (4.10) and (4.10a) express the limiting result, which is closer  

to reality, the smal le r  the values of i? for a cylinder and of l3 for a wedge. 

Attempts to obtain a satisfactory approximation for  force P ,  at nonzero 
from the expanding-plate analogy were made by a number of investigators. 

h 

However, published resul ts  a r e  not f r ee  of certain contradictions in 
applying the Cauchy- Lagrange integral. Hence, a detailed study w i l l  be 
made in subsequent sections of the method of the pressure integral and i t  
w i l l  be correlated with the theory of self-similar immersion of a wedge. 
It will be shown by a number of examples that the use  of this method makes 
i t  possible to obtain approximate, but sufficiently accurate, formulas for 
calculating the flow corresponding to immersion of bodies. 

lk 
Cf v 2  I I 1 I 

20 
-integration of  equa- 

A - from the integral /pdr 
o - Wagner'scalculation for 

tion (4.6) 

P-18 FIGURE 36. 

15 

5 

0 

FIGURE 35. FIGURE 37. 

Wagner 1311, in his classic work, calculated (by the method of 
successive approximations) the drag  P,  for fl = 18", using (4.6). Then, 
using the r e su l t s  of (4.10a) [so-called expanding-plate analogy] and the 
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case  B + :, obtained by solving the problem for  impact on a floating wedge, 

he  suggested the approximating expression 

(4.11) 

Pierson 's  calculations 1 2 8 1  generally confirmed Wagner's results.  
Figure 35 shows the results of these calculations. Curve 1 is calculated 

P 
from Wagner's formula-+ - 2 t 9 8 ( 7  - 1); curve 2 was obtained from 

cp 

Pierson's formula -& 5.9 

(4.10a) with h replaced by X t g f l .  Figures 36 through 39 depict f ree-surface 

profiles calculated by Pierson. 
It was shown by experiments ca r r i ed  out by Zhuravlev and Golovin 1141, 

in which the instantaneous resistance to  energy of metal wedges into water 
was measured by piezoelectric transducers,  that under conditions when the 
aspect ratio can be assumed to be large,  the resul ts  calculated from (4.11) 
a r e  in satisfactory agreement with experimental data. It is interesting to 
note that (as these experiments a lso showed) the force attains its maximum 

when a wedge of width 2 a is submerged to a depth h = ;atg 8. This is an 

indirect proof of the main postulate of Wagner's theory. In general, 
comparison of resul ts  obtained from Wagner's approximate immersion 
theory with experimental data shows that these a r e  in satisfactory agree-  
ment, allowing one to apply these methods to the solution of new problems. 

, while curve  3 was constructed f rom 

2 

FIGURE 3H. 
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FIGURE 39. 

Table 1 l i s t s  quantities measured from Figures  36 - 39 and calculated from 
formulas giving the limiting relationships. 

i 

5. Kinematic elements of the f r ee  surface 

To construct an approximate theory of immersion of various bodies it i s  
very important to estimate the kinematic parameters  of the spray-root a r ea  
and of the spray sheet a t  the f r e e  surface. 

simple measurement of the segment lengths, using the resul ts  of f ree-  
surface calculations from 1281 ,  displayed in Figures  36 - 39. We assume 

that h = 1, h' = 1, t = 1 and also c = A. The asymptotic solution as B -. 0 

yields the following limiting relationships (see the notation of Figure 38):  

The velocity distribution at  salient points of the flow can be determined by 

2teB 

TABLE 1 

40 0.29 1.035 0.181 0.173 1.05 1.87 
50 0.30 1.065 0.242 0.230 1.077 1.83 
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The following should be noted. The tangential velocity within the 
spray sheet is defined as the projection of the t ransport  velocity of the 

spray-sheet tip onto the edge of the wedge, i. e., u,, = ?cos(%A). Had the 

f r ee  surface been stationary [relative to  the wedgeland moved along the 

x axis with velocity z,  the principal boundary condition ( see  Sections 4 

and 6 of Chapter One) would have yielded U, = $ (1 + cosp). It is seen from 

the data listed in Table 1 that, a t  least  up to 
asymptotic theory ( p  -t 0) and of more  exact calculations a r e  in very close 
agreement. 

Let us  now clarify the location on the la te ra l  surface of the wedge of 

as 

= 40", the resu l t s  of the 

point K ,  at  which cp = 0. The potential at point C is q c = H ,  e .  moving along 

C 

the la te ra l  surface of the wedge to point K we obtain 'px = cpc- u,ds = 0. 

Within the integration interval u, < u s e r  and consequently K'C < KC ; here  
segment Y'C is derived from the expression 

K 

Thus, point K with 'p = 0 is situated close to point K ,  but within segment 
K'A ; projection of point K' onto r ,  (point D )  bisects this segment. 

6.  Graphical representation of the momentum and energy 

Once the free-surface shape is known, it i s  possible to construct a 
diagram which graphically explains the application of Wagner's formula 
(4.6) and makes it possible to  approximate the a s  yet unknown potential 

distribution. If the instantaneous values of potentials a t  boundaries a r e  

constructed a s  a function of :, then we obtain the scheme shown i n  

Figure 40a. The potential for  the f r ee  boundaries is calculated from the 
formulas of Section 3 of the present chapter. At the la te ra l  side of the 
wedge, in the spray-sheet region where AP = 0, the potential is easily 
calculated from the known velocities and configuration of the spray. 

the conditions of the problem. The ver t ical  component of the momentum is 
The potential at segment OK is unknown and should be selected to satisfy 

where S,  and AS a r e  surfaces  bound by the curve & = f (3). 
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Figure 40b is a plot of velocity potential 3 as a function of 2.  When 

calculating the kinetic energy along flow tubes, 

T=--$ J cpd$=- -q  j(%-qJs)d4L 
@kf% 'h 

the f ree-sur face  velocity potentials vS in Figure 40b a re  re fer red  to the 
s tar t ing points of the streamlines at the wedge surface; obviously, the 
difference in ordinates of the crosshatched regions S, and S,  is equal to 
the differences in the relative potentials a t  the ends of the streamline, for  

which 

to the kinetic energy and that the equality 

5 2. It is c lear  that the entire crosshatched area is proportional 

is here  valid. 

& 
4 

3 

2 

I 

O 

l 

o a25 0.50 0.7s boo L Z ~  is0 Y 
b vc 

FIGURE 40. 

Wagner's integral (4.5) is I,= 2 T - B B , V =  T .  Substitution of values of T and 
Bh into this expression shows that a r e a  SI disappears from the Wagner 
integral and I, - 2 ~ c ' ( S ,  + hs). However, to calculate the p re s su re  distribution 
a t  the wedge surface it is necessary to know the potential distribution a t  
segment x I ,  which cannot be calculated by ordinary methods. 

Using the expanding- plate analogy, it can be approximately assumed 
that the curve bounding a rea  S, is an a r c  of an ellipse, selected to satisfy 
the following conditions: 

61 



a )  at point K ,  = 0, 

b) at  point $= 3, c p >  0, 

the excess pressure  Ap = 0; 

a straight line tangent to the ellipse at  point L.  

potential along segment * go in the form 

c) f rom point 5, to  the spray-sheet tip the potential var ies  linearly along 

It is evident that a l l  these conditions can be satisfied by expressing the 

(4.12) 

The area  can be determined from 

i h  

S,  = 1 1-1 - -3 d~ = f (arc sm 6 ,  - ta -,I = +- 
0 

In general a r ea  AS is unknown, but some basis exists for  the assumption that 
AS- 0 for small  6. 

From the theory of self-s imilar  immersion 

Substitution of the expression for  c yields 

(4.13) 

Quantity Cr for 
velocity condition 

a wedge when V = const can be determined from the 
at stagnation point K, at  which the fluid velocity is identical 

with the transport velocity a t  point K proper  (see Theorem XVII). The 
potential distribution for  curved sur faces  (a cylinder, say) can be assumed 
to be the same a s  for a wedge, but determination of Gr is a more  complex 

problem, since $ is variable and Theorem XVII is not directly applicable 

to point K .  However, for  slightly-curved profiles C k  is determined in the 
same manner a s  for  a wedge. 

7. Velocity and p res su re  distributions 

Formula (4.12)  defines the velocity potential only a t  the wedge surface; hence 
when differentiating with respect t o  space coordinates we should remain a t  the 
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edge surface s8. Since x =  scmp the tangential velocity is u, = V l ~ ~ s p .  

The x and y components of the fluid velocity a r e  given by the expressions 

which, however, do not reflect the physical reality in the vicinity of the 
wedge vertex, a t  which is situated the stagnation point where u, = 0 and 
0, = - V. In o rde r  to avoid contradictions, the vertex can be assumed to 
be somewhat rounded, and tg pin this region can be treated as the derivative 
of the ordinate of the contour profile with respect  to the horizontal axis. 

By the problem statement, a t  point K ,  U= = 5, $ and 3 = Q. Since 
'k "sk 

h h 1 d h  yI=x, tgp-h and -=-=--.- 
xp, 5aC C h  dc ' 

W e  now derive an equation for  the pressure  distribution over the surface 
Since the velocity potential of a wedge o r  of some weakly curved profile. 

0 = - c V  [ v m -  J'ml has been specified in the moving coordinate system, 
the partial derivative of 'p with respect to t ime for  points stationary in the 
space, coinciding at the t ime in question with the boundary, will be 

obtained using the fact that V q - 2 .  
The square of the absolute velocity of the fluid is 

Substitution of the above expressions into the Cauchy - Lagrange integral 

yields an approximate expression for  A p  a t  the contour surface: 

!!Ep=& V V' I 
Q dl 2 I - - 5 '  
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The value of AD is zero  a t  point t, which is found from the expression 

h 
R 0.0 0.01 - 

P 1.0 0.85 

The d rag  can be found by integrating Ap over the width f Lc. Carrying out 
the required computations and using the approximate expression f o r  &, we 
derive the final expression for  the p re s su re  exerted by the profile on the 
fluid: 

0.04 0.09 0.16 

0.745 0.66 0.58 

(4.15) 

A l l  the expressions obtained f o r  the drag  of wedges with low a r e  a l so  
valid for  slightly curved profiles, since points go and 6. are defined in  t e r m s  

of z. Expressions obtained f rom the estimated momentum (4.13) and 

from the pressure  integral  (4.15) are  in  principle approximate to the same  
degree as Wagner's formula (4.1 1). Check calculations show that for  a 

wedge with B up to 30" ( z u p  to  0.4), the values of d rag  calculated from 

formulas (4.13) and (4.15) are close but exceed somewhat the drag  
calculated from Wagner's formula (4.1 1). 

dh 

d h  

8. Drag on a cylinder 

The drag acting on unit length of a c i rcu lar  cylinder of radius  R ,  being 
immersed  into a fluid with constant velocity V ,  for  the limiting c a s e  of 
h 

+ 0 was calculated above (see formula (4.10)). Since cy= 4Rh and 

$= ?= fl hold approximately for  small  h / R ,  formula (4.15) gives 

(4.16) 

h .  
R as  a function of -is given in  The variation in  the relative d rag  pu = 2q;pR 

Table 2 .  
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It i s  interesting that the force attains i t s  maximum on initial contact 
at  h = 0 and then decreases  rapidly. Evidently, at  some value of h l R  

the spray-sheet root breaks off the cylindrical 
surface and an unsteady transient resul ts  
(Figure 4 1 ). 

It should be noted in  conclusion that potential 
9 = - cV V m  was used by many investigators, 
starting with Wagner, f o r  calculating the p re s su re  
distribution. Two points of view prevailed. 
According to the first ,  due to Wagner 1 3 1 1 ,  i t  
was assumed that potential cp i s  confined to  
the x axis  and that there i s  no vertical  velocity. 
The Cauchy - Lagrange integral yields the 
following expression for the p re s su re  

4 

a75 

0.50 

0.23 
0 0.1 02 distribution: 

The second point of view made allowance for the fact that the potential 
q = - CVV- pertains to the moving surface of a plate. In calculating 
drp at stationary points in space f o r  substitution into the Cauchy- 

Lagrange integral, i t  is necessary to take into account the transport  velocity; 

+ V*. The square of the absolute velocity is v* dc I hence drp = - V P  -. - 
at dh m 

= v: + v; = v* + v n 6 ’ -  v * L  
the following expression for  the p re s su re  distribution along a moving plate: 

The Cauchy- Lagrange integral yields 
I - - 2 -  1 - - 5 ” .  

A situation resulted when the same phenomenon was described by two 

Our preceding analysis shows that in o rde r  to match the assumed 
different equations; the question had to be resolved as to which of them is 
valid. 
potential distribution with conditions at points 
expressed by equation (4.12) or. in the more  general form, 

and &,, Q, should be 

I It is found that this representation of the potential, which yields equation 

I (4.14), is, from the point of view of the p re s su re  distribution, equivalent to 
confining cp to  the x axis and making allowance for v’. I 

9. Transient drag 

Suppose a wedge with deadrise angle p is immersed uniformly into a fluid 
with velocity h ,  but that the edges of the wedge are bounded and have width 
2 1 (Figure 42). It is c l ea r  from the previous discussion that as  long as the 
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tip of the spray  sheet does not reach the wedge base I ,  the flow is self- 
s imilar .  Fo r  smal l  f3 the length of the spray  sheet is approximately c, 
and the depth of wedge immersion a t  which the spray-sheet tip reaches the 
base 1 is determined from the simple expression 

Starting with this time, as the wedge is immersed  further,  fluid par t ic les  
belonging to the spray  sheet will s ta r t  rolling off the edges of the wedge and 
internal free boundaries will begin to form. However, a t  the initial stage of 
this process, as long as the par t ic les  rolling off the edges belong to  the thin 
spray  sheet, it  can be expected that the law governing the rise in d rag  will 
not change substantially. However, as the spray-  sheet root approaches the 
edges of a wedge with width 21, the formation of internal f r e e  boundaries will 
s t a r t  increasingly to affect the fluid flow and this will produce a marked 
change in the increase  of the drag, which up to  then obeyed approximately 

the Wagner formula. At high 71, the flow about the wedge approximates 

steady s t reaming (cavitated) flow and the d rag  may be close to the Bobylev 
drag  /IO/. 

PY 
G 

I 
4 

FIGURE 42. 

These considerations show that, up to  a value of h a t  which l a c  = 2% 
the drag  will increase l inearly according to  the Wagner law; this will be 

followed by a transient process  with the drag  P = P - decreasing and 

2 Q 8 '  

(: 1 
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approaching the Bobylev drag W with increasing f ( a s  

"transient function" i s  applied to the expression 

+ m).  The t e r m  

(4.17) 

Drags P and Ware  proportional to elha, and so function H can depend only on 
h for  given f l ;  drag W is a l so  highly dependent on p .  

It is impossible to derive an exact expression for the transient function, 
and hence we shall give below only some more  or l e s s  satisfactory est imates  
of it.  

10. Estimating the t ransient  function 

We shall consider uniform immersion of a wedge with very small  dead- 
r i s e  angle (p-0), with base width 21. It is assumed that upon termination of 
self- s imi la r  immersion over a width It c in the coordinate system moving with 
the wedge ( x  axis  parallel to the f ree  surface and y axis  directed upward), 
the velocity potential a t  the wedge surface and i n  the immediate vicinity of 
the inner f r ee  boundary is expressed in the same manner a s  a t  the surface of 
a plate with width 2c  moving perpendicularly to  its plane with velocity h .  

Thus cp = - hc I/ 1 -(:)', where c = c ( t ) .  The physical basis  for  this 

assumption consists in the fact that a t  the start of the t ransient  
stage the tangential velocity of par t ic les  a t  the edges x = 1 of the wedge is 
very high compared with h, and the normal  velocity of the boundaries var ies  
continuously on transition from the wedge surface to  the inner f r e e  boundary. 

At the point where the par t ic les  roll onto the internal f r ee  boundary at  
x = lwe have A p  = 0, since it i s  assumed that all the free boundaries are 
subjected to a constant p re s su re  p o .  

we obtain an expression for Ap at  the wedge surface: 

- 

Applying the Cauchy- Lagrange integral t o  the moving point x = const, 

(4.18) 

The normal  velocity of the wedge sur face  i s  

hcasfl = -v,cosfl +oxsine. 

where u,= 2 and vu = -$- a r e  the absolute fluid velocities in the x and y 

directions. Substitution of the expression for vu into formula (4.18) yields 
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where tg2p can be neglected for  smal l  p .  
Wenow use equation (4.2) t o  determine the function c = c ( t )  from the condition 

i 14 

. dc 
tlc ;i? i* 

that Ap = 0 at x = 1 .  F o r  the point x = const, do = - ,,- and 2 = -. at cz - X I  V7=F '  

for  the point x =  1 ,  after substitution of the expressions for  -$ and 2 into 

equation (4.19) we obtain the differential equation 

(4.20) 

The most convenient initial conditions for  solving equation (4.20) a r e  
h, -0 for  t,-O, when 1 = c. The immersion depth h ,  is thus no longer measured 
from the origin, but f rom the location of the wedge apex a t  the t ime when 
the spray  root with abscissa  c reaches the wedge base 1 (in the Wagner 

approximation). Under these conditions, upon substituting v-= sin u ,  

equation (4.20) gives 

J (i 2 hl - h'. il -((A -casu du=ln tg - + - a r c s i n G l ) - - W .  (4.21) 

0 

Ratio -+ r2 as u - 5, and for  this value of the rat io  h is infinite. 

The d rag  P is calculated by integrating Ap over  the wedge width fl: 

Integration of (4.20) yields 

The d rag  given by expression (4.22) depends on the rat io  j ,  by means of 

which the relative immersion depth 4, corresponding to the given value of 

P ,  is determined from equation (4.21). 

expresses  that par t  of the force  which is defined by integrating 2 f rom the 

p re s su re  equation over the width, while the second t e rm is proportional to 

the square of the velocity. When ;+m, 
the f i r s t  t e rm in brackets  of equation (4.22) approaches zero, and the 
transient drag  approaches the steady d rag  expressed by the second t e rm 
of.equation (4.22). It was calculated that the limiting value of the second 

I 
From physical considerations the first t e rm in brackets  of equation (4.22) 

+GO, the iner t ia  force  defined by 



t e rm in brackets of equation (4.22), when ;+fl, i s  approximately i, while 

the drag  on a plate in f ree-s t reamline flow is 0.88 (it was assumed in o u r  
derivation that fi - 0, corresponding to  a plate). 
limiting values follows from our  hypothesis on the distribution of horizontal 
fluid velocities over the width of the plate. 

equation (4.22) a s  the rat io  of the transient drag  P (:) to W = P 

yields 

This difference in 

In the f i r s t  approximation we determine the transient function f rom 

--* 00 . This 6 1 

7.5 
10 
15 
30 
40 

From this the t rue  transient drag is P (+) = HI (+)W'(fl), where W(f3)  is the 

Bobylev drag  f o r  a wedge of base 21 and deadrise  angle f3. We note that the 
transient function has been defined for  f3 -- 0, i. e., for a plate; in general, 
for  wedges with different B allowance should be made for tgp in  (4.19) and 
(4.20). However, it  may be assumed approximately that H ,  is not a function 
of fi and expresses  the drag  variation af ter  the force increase corresponding 
to self-s imilar  immersion ceases .  The transient function is plotted in 

Figure 42. Different values of p, C,, (&)mx and (7)- a r e  listed in Table 3. 

0.855 37.4 0.084 
0.844 26.7 0.112 
0.830 18.6 0.171 
0.745 6.18 0.361 
0.637 3.14 0.637 

TABLE 3 

11. Some experimental resul ts  

It can be shown theoretically that the above theory of the transient 
function is close to  reality; here  some of the assumptions were  selected so 
that they "compensate" one another to some degree.  Now we shall compare 
the theoretical resu l t s  with experimental data. 
general  scheme for  calculating the drag. 
h f rom the point of initial contact with the undisturbed level. 

F i r s t  w e  shall refine the 
W e  now again s t a r t  measuring 

Up to now, as 

long as h < +tgp, the drag r i s e  obeys the Wagner law P = nphh'($ -1)'. 

P h 
If w e  express  the Bobylev drag  by the expression W =C,l~hg, then -= w 2L.- c, 1 X 

75 



h 2  attains i t s  maximum a t  7 = Ir tgfl at which point the straight 

( 1  1 l ine won the plot of H, = f -!L should intersect  the curve of H P 

h is replaced by h, = h-h, .  The value of h, should be  determined f rom the 
condition that 

Experimental studies of immersion of wedges were  car r ied  out by 
Golovin and Z.huravlev / 141 with special  equipment in which the instantaneous 
d rag  was measured by piezoelectric transducers. The conclusions which 
follow from a series of experiments using metal  wedges with deadrise  
angles fi equal to  5, 10, 15, 30 and 45" a r e  as follows: a) the d rag  on a 

wedge attains i t s  maximum a t  7- = 

L b) the d rag  for  large aspect ra t ios  Fduring the period it rises t o  the 

maximum ( c  = 1 )  is equal to  the Wagner d rag  P = x ~ h b  (G -I)*; c )  af ter  

attaining the maximum the drag  variation is governed approximately by the 
transient function. 

attained experimentally, since any real wedge has  some length L and width 
21. Hence the actual drag, when approaching the maximum, will always be 
smal le r  than i t s  value f o r  two-dimensional flow. However, a t  the initial 
immersion stage, when L is much grea te r  than the wetted wedge width 2 c ,  

the value of ;ii; can be determined from the slope of the curve on the 

oscillogram, thus checking Wagner 's  formula.  This was done precisely in 
1141, where a graph has  been constructed showing the effect of the wedge 

aspect ratio on the rat io  of the real to  the Wagner force. 

h 2  
tg p, i r respect ive of the aspect ratio; 

Two-dimensional flow attendant on immersion of a wedge cannot be 

dP 

L 

UNIFORM IMMERSION O F  A CONE 

12. Immersion of a cone 

The flow ar is ing on uniform immersion of a cone along its axis  of 
symmetry (Figure 43) with velocity V is self-s imilar .  In general the 
theory of immersion of a cone i s  analogous t o  the same theory f o r  a wedge. 
The velocity and p res su re  at  geometrically s imi la r  points remain 
unchanged a t  any t ime, the l inear  dimensions increase  proportionally to 1 ,  
the momenta and kinetic energy are proportional to  tS  and P, is proportional 
to  t*. The relationships for  the ver t ical  momentum and the kinetic energy 
of the fluid are  
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I P 
t' = const. 

Since the vertical momentum component is 

(4.24) 

the drag  is 
DB p -2 " -  M 

DR, . and the value of B, is proportional to f S ;  D1 is proportional to  3 P  and so 
3 the ra t io  of the derivative to  the integral is -.  Thus 
t 

(4.25) 
S,+S 

where S is the surface. A s imi la r  result can be obtained directly by 
applying the dimensionality theory in the manner presented by Sedov 1201 .  

Center of 
similarity 

bornorhetic 
center] 

Trajectory of particle 5 

r. 

. \;:Er; face from the approximate 

True free surface 

Y 

FIGURE 43. 

The normal velocity a t  the cone surface i n  the expression for  kinetic 
energy 

T = - % cp $ dS 



is 2 = Vcosp ,  while in the expression f o r  the momentum at the same 

surface cos@, y) = cos@. Hence integration over  the solid boundaries can 
be eliminated by expressing 5, in  t e r m s  of Wagner's integral, extending 
only over  the free boundaries of the fluid s,; this  momentum is 

all 

(4.26) 

F rom this, applying (4.24), we der ive an expression for  the drag in 

t e r m s  of q, 

dS = Znr,ds, and a free-surface a r c  element is dscos(<y) = d r * ,  where r* is the 
distance from the point to the y axis of symmetry. 

The kinematic conditions a t  the free surface will be the same as in two- 
dimensional flow upon immersion of a wedge. Hence the velocity potential 

at  the free boundary is a l so  cp = 7, where r is the distance from the 

homothetic center to  the free- surface point. 
surface points remain unchanged along s (in the r?.  y plane), but the fluid 
particles will s t re tch in direction perpendicular t o  s.  For a cone, as 
previously f o r  a wedge, the d rag  can in principle be obtained from Wagner's 
integral  by the method of successive approximations. In addition to the 
condition div ;= 0, the condition of equal volumes displaced by the 
cone and lifted above the undisturbed level  should be satisfied a t  each point 
of the fluid-filled space (see Figure 43). 

and cos(nfy) at  free surface S,. Here the a r e a  element is 

The distances between free- 

13. Case  of smal l  deadrise  angles 

For a regular  cone with deadrise  angle p ,  when $ -. 0, the velocity at 
which the pressure  surface c expands can be determined from the same 
Wagner considerations as for  the wedge in  the two-dimensional case.  Let  
u s  assume that everywhere a t  r > c, at each instant, the  distribution of 
ver t ical  velocities a t  the free surface is the same  as on ver t ical  impact 
onad i sk  of radius  c ,  floating on the surface. Fluid particle 5 a t  point r* 

moves vertically upward and, at  t ime 1, when rl = c, reaches the generatrix 
of the cone, moving toward it with velocity V. If u denotes the vertical  
velocity of particle rise above the undisturbed level, we may obtain a 
relationship valid for  that value of t at which r. = c :  

fudf + vt = c(tg$). 
0 

(4.27) 

The velocity of particle 5 is u = V /  - , on the assumption that f is not an (3 
explicit function of f. The radius of the pressure  surface is c = c ( r ) .  Since 

c =  - t  and - - const, we have dc dc 
dl dl 

1 +-  * d c = r ,  tg$ 



or  

(4.28) 

Velocity distribution function f (?) outside radius c is obtained directly 

from the known solution of the problem on translational motion of a disk in 
an unbounded fluid. 

As is known /IO/, in elliptical coordinates, y = cp5 and r * =  c (1 -  v"):-(C + 1; 
2V and the velocity potential of the disk is 

this plane (at p =  0); therefore 

= 7 ; - c ~ , ( l -  [arcctg 5 ) .  
In the plane of the disk for r* > c  the curves of c=  const a r e  orthogonal to  

Since 5 =[($)I- I]!, formula (4.28) yields 

=- tp"s ( 1 +--- : f {[  arcctg Wp(+)1=+& 
The "momentum" of the fluid set  into motion by the floating disk to 

which velocity V has been imparted normal to  i t s  surface is 

and consequently the drag is 

P , =  4pc'-v. dc 
df 

Vt Lnd the depth of immersion of the cone apex i s  dc Since c=-t=-  df n tgp 

h = Vt, we finally obtain 

P = 4pV*ta (L)l= 4pVaha [ h y .  (4.29) 
ntgp 

For  a finite cone with base radius a the maximum value of c is limited I 
by the value of a .  Hence the maximum drag  is 

fJmX = 4QValla - . 
(nt'pe) 

Formulas  (4.28) and (4.29) a r e  limiting relationships, which hold a s  fl .+ 0. 
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zero to c = r e .  At any instant the particle rise 
velocity a t  the outer fluid surface is 

u ( r t .  t )  = Vf - , where r t  = const, and c = c ( %  

d t l  - 9 

f Y  

FIGURE 44. 

integral equation 

V 
& de 
dt 

Vdt = -dc = *dc = F (c) dc , we derive the - 

(4.30) 

Lotov obtained a solution of equation (4.30) for  the velocity distribution 
over the f ree  surface with a corresponding disk: 

(4.30a) 

This form is convenient for  practical calculations. 

the body generatrix y l ( r e )  when f (+)= e is not an explicit time function, the 

entire problem has a unique solution, and thus function dc = F (c) together 

with the Laplace equation and boundary conditions express  the holonomic 
geometric relationship between n +co part ic les  of a system of mass  points 
with n- 1 constraint equations, with the resul t  that the entire system has one 
degree of freedom. 
consis ts  in the fact that the above velocity distribution function f ( r * r )  
rigorously applies to the plane of the disk when r > c, while actually one 
obtains a curved f ree  surface and a velocity distribution different from the 
above. Actually, the particle constraints for  immersion of solids 
into a fluid a r e  not holonomic, and hence equation (4.30) is the c loser  to the 

reality, the smaller  x. 

It follows from equations (4.30) and (4.30a) that, for each given form of 

dh 

The limitation on the applicability of equation (4.30) 

dh 

14. 
the drag  on a cone 

Application of the p re s su re  integral for determining 

It was found from a study of the p re s su re  integral for uniform immersion 
of a wedge that, according to the expanding-plate analogy, the expression for  
the drag  on a wedge is very close to that determined from Wagner's 
integral. Hence the drag on a symmetr ic  c i rcular  cone at  not too la rge  fl 
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can, a s  in the case of a wedge, be calculated using the analogy between the flow 
about a cone and the flow ahead of a disk of radius  c = c ( t )  performing 
translational motion with velocity V. 

motion of a disk perpendicular to i t s  plane, we assume he re  that only 
positive p re s su res  remain equal at the pressure  surface of the d i sk  (which 
is assumed to be equivalent to the cone), while starting from point r* where 
Ap = 0, the tangential velocity along the generatrix becomes constant and 
the potential increases  linearly along the spray sheet. This approach makes 
it possible in principle to obtain agreement between the main postulates of 
the exact theory of motion with a homothetic center  and the approximate 
identification of the flow ahead of a cone with the flow ahead of a disk. 
It can be shown that both theories become identical as 

Unlike the classical  statement of the problem on uniform translational 

--f 0 .  
Using the expression for  the potential at the leading surface of the disk, 

re fe r red  to the coordinate system moving with the disk, and the expression 

at  points 

expression 

= const a t  the surface of the equivalent disk, we derive the 

(4.31) 

It was assumed in  formula (4.31) and subsequently that = 5. It should 

be noted that this formula does not contain the above expression for  'p, from 
which 'p= 0 when r = c, but the partial derivative 

where 

stationary fluid. Hence the assumed expression for cp is used only in the 

sense that 

is determined in the coordinate system associated with the 
stat 

d'cp * dc 
= dc.dt. The disk analogy is applied only to the expressions 

for  dc dcp and %; the point r at  which Re potential 'p vanishes is not determined by 

the pressure  equation. 

at which Ap = 0 is determined from (4.31) by the expression 

Equation (4.31) is s imi la r  t o  equation (4.14). 
Since i t  is assumed that a t  the generatrix of the cone Ap 0, point &, 

I 
I 

(4.32) 
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F o r  smal l  tgp, approximately 

The resultant drag  can be determined by the integral of pressure  Ap over 
the projection of the cone surface on the plane y = const: 

Ap2nr,dr, = 4gVahA ((+)'(I - v c Q  - 
( 4 . 3 3 )  

Dividing the right- and left-hand s ides  of (4 .33 )  by the limiting drag  obtained 
from formula (4 .29) ,  w e  {lave 

(4 .34 )  

If the cone is not infinite and has a base radius a ,  then at  t ime 1, the 
spray-sheet root will attain the radius &e = a and P, has a maximum. It 

follows that a = 4v'm and so the maximum drag  is 
ntgS' 

(4 .35)  

For  uniform immersion of the cone 

where 

The kinetic energy T of the fluid upon immersion of a cone is equal ( a s  
for  the wedge) to the product of velocity V and ver t ical  momentum 

component B,. 

( a s  p -+ 0)  to the spray sheet and assume that the spray length is c and the 
thickness a t  the root is 6 .  Since by s imilar i ty  the section cut through the 
spray  sheet by a plane through the y axis should be approximately triangular, 

the volume of fluid in the spray is found to be The absolute velocityin 

1 4 v p  W e  re fer  the entire kinetic energy T - T V B u =  ~ e Q C 9 - 1 -  

the spray sheet (when -> L), a s  for  a wedge, is 2 % =  T.L; 8 hence the 
tg P 

energy equation yields = tg2p. Moreover, for  relatively la rge  p the 

spray-sheet volume can be determined from the general  energy equation 

T = VB, 



f. 0 + - Watenabe 
o-Golovin and 

Zhuravlev 
- Shorygin 

0.5 < 
Y 
3, ,, 

Tcq, 

TABLE 4 

Experiments carr ied out with metal  cones 
in  which the forces  were measured by 
piezoelectric transducers show that this  theory 
is in satisfactory agreement with experimental 
results.  Table 4 l i s t s  three values of the 
maximum drag  obtained experimentally and 
theoretically f rom (4.35), as well as the t ime 
t,, obtained by these two methods.:? 

the diameter  2a was 80 mm for  cones with @ 
The entry velocity V was close to  4 m/sec ,  

P,. dyne 

experimental  theoretical  
6 .  deg 

10 63.0 59.2 0.00134 
1s 0.00161 
20 1 1 i:li 1 0.00280 

im .  sec 

experimental theoretical  

0.00138 
0.00165 
0.00286 

f l s  deg 

K @) 

0 10 20 30 40 50 60 70 

1.00 0.82 0.68 0.51 0.40 0.30 0.25 0.22 

T h e  experiments were performed by Golovin and Zhuravlev /12. 13/. 
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The above approximate theory yields resul ts  close to experimental 
resul ts  at  angles p approximately equal to 30". The experimental resul ts  
obtained by various investigators a r e  plotted in Figure 45. Segment 1 
of the curve  corresponds to  (4.34), while segment 2 was plotted from a 
formula obtained by Sagomonyan which, in our  notation, has the form 

K (p) = (+lap In.-!. and is valid for  smal l  angles = - P  - 0. 
P 

15. Transient drag on a cone 

After the tip of the spray sheet reaches  the cone base a ,  fluid particles, 
which up to now moved along the cone generatrix, will be shed from the 
edges. However, fluid particles belonging to the spray sheet already move 
at a steady velocity and consequently their  separation f rom the edges should 
not affect the law governing the r i s e  in drag. A cavity s t a r t s  to form f rom 
the t ime the spray root reaches  the cone base ( c  - a ) ,  and this will result  
in the reconstruction of the flow and in changing the relationship P, = P, (h). 
A s  the immersion depth increases,  the drag  will tend t o  the value of steady drag  
on a cone moving with developed cavitation behind it, i. e., at h - 03 we 
have P,(h) -c W (h -W OD) .  

PY (:) (a) w As for a wedge, the transient function is H = -. To estimate the 

function H - we assume potential 'p at the surface of a disk with radius 

c* > a  is expressed in  the same manner as on the surface of a disk (cone with 
p- 0 )  at u > c .  Here  radius c' is actually some linear time-dependent 
variable. The condition for  determining c* = c* (1) consists in the fact that 
Ap = 0 when r. = a .  Since the potential cp = --+Vv= is taken in the 
moving coordinate system and pertains t o  the surface of a hypothetical disk 
with radius C* > a ,  the equation for  p re s su re  at  disk surface u is 

At the edge of the disk r .  i= a,  Ap = 0, and upon substitution fo r  $- and 

(discarding the aster isk over c )  

(4.36) 

The condition that Ap= 0 at  r. E a yields a differential equation for  c =  c ( t ) :  

(4.37) 

84 



Integration, subject to the initial condition that ;= 1 at f = I ,  gives 

f - ] - G t F ] .  ( 4 . 3 8 )  

Here, a s  for the wedge, l inear  variable c does not increase together with 
the infinite expansion of the cavity radius, but attains a limiting value 

c = a fG a s  This is a natural result of the schematically 

assumed potential distribution over the plane of the disk ( p  - 0) and the 
region in the proximity of i t s  edges ( r = a + e ,  where e < a ) ;  formally these 
approximations a r e  valid when v, >i V .  It is c lear  that while the distributions of 

potentials cp and velocities $ obtained from the assumed expression for  cp 

may be close to  the actual distributions at the d i s k  surface, the 
potential distribution at the cavity boundaries is quite different. An 
approximate distribution of cp in the meridional plane r*y is shown 
schematically in  Figure 46. 

VI -+-. 

Internal Separated streamline 

h 

FIGURE 46. 

The esultant drag  is obtained a s  the integral, over the a 
of the projections of excess-pressure  forces  on the y axis. 

of from equation (4 .37 )  into (4 .36)  yields 
l 

ea of disk a ,  
Substitution 

x [ I  - v-737; + [ 1  + $ + S I " ( l  -$)I} = 

=PU($) +Pi($). ( 4 . 3 9 )  

From the physical point of view the f i r s t  t e rm in braces of ( 4 . 3 9 )  gives the 

unsteady drag coefficient corresponding to 2 in the pressure  equation, while 
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the second t e rm corresponds to 3; however, these t e r m s  are related. 

As the cone immersion depth increases  ( V t  + QD) the f i r s t  t e rm tends to 
zero, while the second increases  to the steady d rag  W .  

The cavitation drag  coefficient of a disk as V t  -+CO is C, = 0.82, while 
the limiting value'of the las t  bracket in (4.39) is approximately 0.7, which 
coincides with the d rag  coefficient of a cone for  which $ = 15". 

on f j ,  we define the transient function as  
On the assumption that the transit ion d rag  does not essentially depend 

VI 
a 0.025 - 

where the relationship between < in (4.39) and 

Then the t rue  transient drag on a cone is obtained from the expression 

is derived from ( 4 . 3 8 ) .  

-. - - - 
0.05 0.1 0.2 0.3 0.4 0.5 1.0 

1.86 1.57 1.36 1.24 1.16 1.11 1.02 

(4.40) 

where the t rue steady cavitation d rag  on a cone, W = c @ ) J u J ~ ~ ~ ,  should be 

determined independently of equation (4.39). 
The values of the transient function calculated from the preceding 

formulas are listed in  Table 6. 

2 

As for  a wedge, the transient function H ,  for  a cone tends to  infinity as 

approaches zero. 

It is c l ea r  f rom the preceding that in calculating the entire process  of 

High values of H ,  correspond t o  small p, a t  which 
the maximum value of P ,  is very high. 

immersion of a cone during the t ime up to  t,= +.% drag P ,  increases  

as a square  of the time and its maximum a t  t ime t ,  is determined from 
expression (4.35). Then the drag  decreases  according to  the transient 
function. Consequently, the t ime scales of f, and f a r e  shifted relative to  

Vf one another by an amount given by P,(f)mar = H , ( T ) W .  

W e  note in conclusion that the principal resu l t s  of this theory a r e  in 
agreement with experimental data, particularly with respect  to  t ,  and P,, , , .  
The experimental verification of the calculated value of HI for a cone is 
more  difficult than for  a wedge as a resul t  of a sharp  drop in the d rag  
after the maximum. At this  stage a cathode-ray oscillograph was used for 
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recording elastic transient oscillations of the system, which a r e  super- 
imposed on the transition drag. 

5 = H (:) is plotted in Figure 47. The theoretical results (curve 1) a r e  W 
compared with experimental data (curve 2 )  in Figure 48. The drag  
coefficients of cones with different cone angles a r e  given in Table 7. 

The graph of the transient function 

% deg 5 

CZ 0.78 

K,(B) 12.8 

FIGURE 47. FIGURE 48. 

10 15 20 30 45 

0.75 0.715 0.68 0.607 0.465 

5.65 3.35 2.25 1.05 0.3 

SYMMETRIC IMMERSION OF BODIES AT VARIABLE 
VELOCITY 

16.  Immersion of bodies at variable velocity 

To better clarify the features  of flow of an  ideal incompressible fluid 
brought about by a body being immersed through i t s  free surface, let u s  
imagine that the fluid is continuous. W e  imagine that a wedge is immersed 
into such a fluid with constant velocity and, when the apex reaches depth h ,  
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the wedge is instantaneously stopped by an impulsive force applied only to  
the wedge. Until the wedge was stopped the velocity potential qs being 
accumulated a t  the free surface differed from zero. Since the impulsive 
p re s su res  at  the free surface a t  the t ime of stopping are zero, potentials 
qr remain unchanged a s  a resul t  of stopping the body. The pressure  
gradients during impact a r e  directed normal to the free surface,  and 
therefore also the tangential velocities U, remain unchanged (see 
Theorem 11). It follows that stopping the wedge does not result  in 
instantaneously stopping the fluid flow, as would have happened in the case  
of a body moving inside the fluid. 

Let u s  assume that the velocity potential of flow being induced by the 
continuous immersion of the body is cp = 'pI + 'p2. Potential y ,  corresponds to 
impact excitation of flow due to the instantaneous configuration of f ree  
boundaries (at  the free surface q, = 0).  The accumulating potential CP? 

differs from ze ro  a t  the f r ee  surface S and does not depend explicity on the 

body velocity; consequently, a t  the surface of the body *= 0. According 

to Green's theorem 
dn 

The f i r s t  integral is equal to zero, since a t  the solid boundaries $= 0, 

while a t  the f r ee  boundaries y ,  = 0. Consequently, the integral  in the right- 
hand side is also zero. 

momentum B can now be represented as a sum of two t e rms :  
The kinetic energy T of the fluid and the vertical  component of the 

B = - p q,dx - p 11 cp,dx = B, + B, 
sk s+sh 

Only the energy T, and momentum B,  can change instantaneously with a 
change in i ; these two f o r m e r  quantities can be represented in the te rm 
of "impact" induced m a s s  m* using the ordinary expressions 

Formally the impact induced m a s s  m* can be calculated by solving the 
boundary-value problem for each configuration of boundaries, as is the 
case with the induced m a s s  of a floating body. 

on the fluid is expressed by two equations: 
From the energy and momentum equations the pressure  force of the body 
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The t ime derivatives of T, and E, a r e  

The t ime derivatives of T, and B, can be treated as the energy and 
momentum fluxes to the spray sheet. Denoting the mass flux by eQ, we find 

that - D1 D1 sc 

B can be determined from the spray-root analogy. We thus have two 
independent equations for  the pressure  force  of the body on the fluid: 

DT* 2 OB* 
Q ~ $  and - = - &U sinp; velocity u, and the spray-sheet slope 

the energy equation 

P = m * h + - h - + + $ :  . I . dm' 
2 df 7.h 

the momentum equation 

.. dm' P = m*h -k h -- eQuY sin p, dt 

which contain the three unknowns P, m8 and Q .  Hence we make the additional 
requirement that at 'h  = 0 each of these equations should express  the force 
upon uniform immersion, always expressible a s  

We note that Mo has the dimensions of the induced mass  and can be 
determined quite easily from the expression for  the force during uniform 
immersion. 

It should, however, be remembered that M,, which shall be termed the 
''apparent" induced mass ,  being multiplied by the acceleration does not 
yield the reaction force of the fluid on the acceleration of the body. Thus, 
a t  i = 0, 

$ (M0-  Y m * )  1 = PQ:, fJ:, , 
2 ha 

If -!!!L = k ,  then upon elimination of QQ 
i sin B 

Integration of both par t s  of this equation with respect to the variable M, 
gives 

(4.41) 
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Returning to  the start ing equations, we find that the pressure  exerted 
by the body on the fluid is determined f rom the general formula 

(4.42) .' dM 
dl P = m*h +-L h. 

In particular,  the value of k in the integrand of (4.41) is constant for  a 

wedge, and that when p --* 0, k -OD, and when 8 --f 5 ,  k -+ 2 ( y 8 )  = T-cL, 

hence p-0; m* .+ M,; f3 - +; m* - 2M,. Formulas  (4.41) and (4.42) are equally 

valid f o r  symmetr ic  immersion of two-dimensional profiles and for  the 

1 

immersion of axisymmetric bodies. 35 

17. Principal energy and momentum equations 

The preceding conclusions make it possible to calculate the energy and 
momentum of the fluid in  the free s t ream ( T ,  and B , )  and in the region of 
the spray sheet ( T ,  and B%).  It follows directly f rom equations presented in  

the preceding section that TI = B , $ ;  hence Wagner's integral  is 

I, = 2T - Bh = 2T, - Bah, 

On uniform immersion 

T ,  - (Ma - m * )  k; B,  = (M, - m * ) k  

1 It follows from Section 16 that in all cases  m" > M a  > T m * .  F o r  bodies 

c lose to a plate or disk (wedge o r  cone at b o ) ,  m * > M o ;  hence T , ) T ,  while 
B , S  0. 
approximately equally between the main flow and the region of the spray 
sheet, while the momentum of the main flow comprises  the principal 
contribution to  the expression for  the force.  

for  6 - 0  and p -5, i t  can be shown that for  the entire range of p the 

integrand in (4.41) can be  approximated by 

The energy for  the immersion of such flat bodies is divided 

Using the tangential velocity us, estimated from the spray-root analogy 

(4.43) I + k  I = I - ycosp. 

Consider the immersion of a wedge. It follows from Wagner's formula 

that Ma= ~ Q P ( $ - -  2 1)'; substitution into the principal equation (4.42) yields 

(4.44) 

5022 



The expressions for  calculating the forces  attendant to nonuniform 
immersion can be obtained f o r  any body, i f  the force attendant to  uniform 
immers ion  is known and, conversely, f rom a known induced m a s s  m*, 
calculated f o r  the case of impact on a floating body, one can determine the 
force  attendant to  uniform immersion. 

For "slender" bodies when ;ii; -0, the d rag  is given approximately by 
dc 

the formula 

.' I . dm' P -m*h + - h - 
2 dt (4.45) 

In the sense  of the derivation of the preceding equations, m* is the impact 
induced mass ,  determined for  the case  of impact on a body floating on the 
free surface,  distorted by the preceding continuous immersion. 

For  very slender bodies ( p  + ;) Mo>? m*;  hence the momentum of the I 

main flow is B,  = m*h,  while the momentum of the spray-sheet region is 

found to  be halved, i. e., B, = -- m*h.  The kinetic energy in the region of 

the spray sheet is close to zero,  and the main part  of the kinetic energy is 
concentrated within the main region of the flow. 

I '  
2 

For symmetr ic  immersion of a c i rcu lar  cone it can apparently be 
I t k  I assumed that, as for  the wedge, 2 L + ~  I -Tcosp. Hence, f rom the preceding 

formulas, 

rn - 2  1 --cosp M,. * - ' (  ' 1  
I The apparent induced m a s s  for  a cone is M, = ,~$Pf(fi). where 

4 f(p) = 4 (my K (p). Here the value of function Y@) is shown in Figure 45. 

According to (4.42), the final expression for  the drag is 

Formula (4.46) can be used for  pract ical  calculation of P; however, this 
expression d is regards  the friction force. 

18. 
of d rag  

Application of the W a g n e r  integral  to calculation 

Consider the recti l inear immersion of a solid body into a half-space filled 
by a weightless incompressible fluid. As above, the wetted surface of the 
body is denoted by S ,  and the free surface by S. The body moves with 
velocity v; the  velocity potentials at surfaces  S, and S are  respectively 
denoted by 'Pk and Q,. 
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The kinetic energy of the fluid is determined from formula (2.7). 

Since the normal  velocity of the fluid a t  surface S, is 2 = nV, division of 

integral  (2.7) into two integrals over  S, and S gives 

2T = - ~vi'p,;rdS --pi'p,% dS = 2T, + 2T,. 
s b  S 

The momentum of the fluid according to (2.14) is 

Elimination of the integral  e(qbndS f rom the f i r s t  and second expressions 

yield the W a g n e r  integral: 
i b  

drg which does not involve integration of 'pb and -$-over the solid boundaries. 

W e  now note some propert ies  of Wagner's integral. 
1. The Wagner integral  attentand to  the impact excitation of flow from 

r e s t  i s  zero  for  any free-boundary configuration. On impact excitation of 
flow, cp. = 0 at  the f r e e  surface both before and af ter  impact. 

T=kvBwhile IW = 0. The energy and momentum in this case  can be expressed 

in t e r m s  of induced masses ,  which are  uniquely determined by the configura- 
tion of the wetted surface of the body and of the free boundaries before 
impact. 

2. The Wagner integral  for  uniform motion ( a  = const)  is equal to the 
kinetic energy of the fluid which, in turn, is equal to  the sca la r  product of 
the momentum and velocity vectors.  Integration of the energy equation 
(2.13) for  o = 0 and 0 = const yields 

Hence 

I 

T p j  Fdt = VE. 
0 

Substituting this  result  into (4.47) gives I ,  5 T. Differentiation of the 

Wagner integral  with consideration of the fact that = yields dB 

&W dT -- At = const, 7 = 

the fluid. 

= P V ,  where p is the vector of the p re s su re  force  on 

dl 
Expanding the expression for  -$ and substituting the value of s into the 

las t  equation, we have 
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or, using the preceding expressions for  the integrals, 

(4.48) 

(4.4 8a) 

Figure 49 depicts the flow pattern on entry of the body into the fluid. The 
space occupied by the fluid can be divided into three regions, designated 
respectively I, I1 and 111. Region I (main flow) is bounded by surface S, of 
the body, s t reamlines  moving from points C, where f r ee  boundaries form, 
to the zero-potential surface T and then along it to infinity. Integrals 

2{  ~ 2 dS and E b  = - e  qa;;dS express  the kinetic energy and 

momentum of the fluid in region I; the energy T, and momenta Bb shal l  be 
termed bound. 
f r e e  boundaries C K ,  segments K D  of the zero-potential surface and 
streamlines CD. 

S T =-&! q - 
s b  

Region I1 (region of the cavity) is bounded by the inner 

--- 

FIGURE 49. 

Region I11 (surface region) is bounded by the zero-potential surface and 
the free surface, situated above it. According to Sections 10 and 11 of 
Chapter Two, i f  the excess p re s su re  at  the zero-potential surface is zero, 
the r a t e  of propagation of surface T is equal to half the velocity of the 
fluid a t  this surface and the volume of region 111 is equal to half of the 
volume displaced by the body and the cavity from the initial fluid region. 
When the zero-potential surfqce intersects  the inner surface of the cavity 
o r  the surface of the slender body these conditions are  also approximately 

satisfied; the resul ts  show that in this ca se  2 = E ,  5 = n,  where E and 

fl respectively are  the energy and momentum fluxes through the zero- 
potential surface T, while T, and % are the kinetic energy and momentum 
contained in region 111. 
a quite simple calculation of the p re s su re  exerted by the body on the fluid. 

dT 
df dI - 

For slender bodies formula (4.48a) makes possible 
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19. Axisymmetric immersion of a s lender  body 

For  immersion of a slender body (Figure 50) = f (LJ), the preceding 
equations can be simplified and hence some specific resul ts  can be obtained. 

0' X 

FIGURE 50 

sk 

In addition, this ca se  i l lustrates the 
application of general principles presented in  
the preceding sections. 
case the cavity region I1 does not exist and 
only regions I and I11 a r e  present.  F rom 
equation (4.48a) the pressure  exerted by 
the body on the fluid is 

W e  note that in this 

The projection of an  element of the body 
surface Sb on the horizontal plane is 
dS,, = hdS; the velocity potential a t  the body 
surface can be expressed in the form 
cpk = - h i @ ( ; ) ,  the distribution function O ( x )  

being unknown. Integral -3  [ 9,ndS = 

~ 

i4  
sh - 

= e j hQ,(x)dS, ,  = m* (h,  t~ clear ly  expresses  the induced m a s s  in the direction 
of h ?  Thus, the f i rs t  t e rm in the expression for  the force is m*h. 

it? energy and momenta, respectively, are T ,  = m* 

the induced m a s s  rn (h,t)depends not only on the shape of the body, but a l so  
on the location of surface T, and this surface is unknown. It is virtually 
impossible to obtain an exact solution of the problem, but an  approximate 
solution can be obtained. 
the fluid along segments KC and use  expressions for  the energy and 
momentum fluxes through the zero-potential surface.  
exerted on the fluid can be determined, on the one hand, f rom equation 

(4.48a) and, on the other, f rom the expression P = - ( B h  + B s ) .  

expressions for  the energy flux E and momentum flux nuthrough the zero- 
potential surface,  we derive 

The bound 

and B, = m*h. However, 

Fo r  this we must disregard the forces  acting on 

The p res su re  force 

d 
dt Using the 

- dm' .. '. 2E P = m*h + - + ny = m*/i + h- - n,. dt h 
(4.49) 

F o r  a slender body the value of E can be neglected, compared with n,, 
as being a higher-order infinitesimal. Hence for  a slender body we have 

approximately h __ - 211, = 0 o r  R, - 2 8 ,  = 0, i. e., the momentum of the 

main flow B k i s  directed downward and is twice as la rge  as the momentum 
of the surface region, which is directed upward. Equation (4.49) yields 
a limiting expression for  the pressure  force exerted by the body on the 
fluid, obtained above in Section 17 by a different method: 

' do>* 
dl 
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Finally, to calculate force  P one may (using the method of sources and 
sinks) calculate velocity u at surface t and then find lI, by direct  integration. 
Here it is necessary to sat isfy the general  continuity equation, according to 
which the volume of the surface region is equal to  half the volume displaced 
by the body from the initially undisturbed fluid. The second method of 
calculating P consis ts  in finding the induced mass  m'. This question is 
examined in the following section. 

ver t ical  velocities of point C a r e  approximately the same, while the 
tangential velocity of point K is approximately halved. If the body contour 
x"= f ( v )  is specified, then point C is determined from the condition 
n c = f ( h  + ;J, while the distance from point K to  the tip of the body is 

It can be found from the spray-root analogy that the horizontal and 

- 
1 -  h' = h + y x C -  

For  a slender body surface T is close to the horizontal plane. Hence the 
induced mass  of the same body, floating on the horizontal surface and 
submerged to depth h', is very close to the sought induced mass  m*. 

20. Induced mass of a slender body 

Figure 51 shows a slender body whose contour i s  described by the 
equation R = f (q). This body floats on the f r ee  surface A B  of a fluid filling 

the lower half-space. If a velocity h is imparted 
impulsively to this body then, according to the above, 
the velocity potentials at the f ree  surface will be zero 
and, using the symmetry principle for  calculating the 
flow, we may supplement the lower par t  of the body by 
i t s  mi r ro r  image in the upper half-space and consider 
the motion of this "doubled" body, a t  velocity h ,  in an 
infinite medium. 

The velocity potential at infinity ( r  -+ 03) is now 
calculated from (2.26) or (2.27), respectively, for  the 
two-dimensional o r  axisymmetric case.  

- j  q d ~  =+Qh i s  equal to the "true" volume Q of the 

submerged par t  of the body, while the velocity potential 
(for axisymmetric flow) is 

The integral 

sk+s 

cos0 I 
h;f2e (;* 1 ( y B y  -hQ} =- - - + Q . v(,,,, = 0' 7 

FIGURE 51. This value corresponds to the potential induced by the 
"true" body, supplemented by its mirror- image 
transform for  motion in the y direction with velocity h. 

can be represented by a system of sources  distributed along the longitudinal 
axis. Let the density of sources  a t  the axis of symmetry be y(q)  and let  this 
source distribution correspond to the body R = f(q). It is possible to select 

another body R' = f ' (q)  which is defined by the condition that y(q) = h2nR' =. 

As is known, the flow of a fluid induced by a slender axisymmetric body 

dR' 
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The velocity potential of a single source is --y(rl), where r' = r f qcose, while 

r is the distance from the coordinate origin to  the distant point. Since 
1 7 * 0 when r -+ 03, we obtain fo r  the potential 

4nr 

The integral in the f i r s t  t e r m  is zero, since the total source flux should be 
zero. The integral  in the second te rm is the moment of the doublet. 

Substitution of the expression for y (9) yields 

Quantity Q shall  be termed the "fictitious" volume. Since sources  y(q)  
correspond to the ' 'true'' body, 'p = qi (as r +a). Since B u -  - - m*h, we have 
finally 

tllf - = Q' - Q. 
e (4.51) 

T h  e o  r e m XIX. The volume of the induced mass  corresponding to the 
longitudinal motion of a slender body is equal to the difference in  the 
fictitious and r ea l  volumes of the body. 

For a body with given shape R = f (q) one determines, somehow, by one of 
the available methods i t s  corresponding system of sources  y (q)and then finds 
the value of Q' from (4.50). The sources  and sinks yield the relationship 

Since d ( Q ' - Q )  = n(R 'z - f?Ra)dq ,  the expression for the volume of the induced 
m a s s  has  the form 

where 

The induced mass  mapertains to body Q. However, for  a very slender 
body rn*can be approximately r e fe r r ed  also to body Q'. The volume of the 
induced m a s s  is crosshatched in Figure 51. In general  the longitudinal 
induced m a s s  for slender bodies of revolution amounts t o  only several  
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per  cent of the volume of the submerged part of the  body. Thus, 
Sagomonyan derived the following expression for  the drag  on immersion of 

a slender cone with vertex angle 2p : P 

be determined from equation (4.45): m* = ?-Qh3p4 In-. The rat io  of the 

volume of the induced mass  to that of the body i s  % = 2paln -; if p = 0.1, 

th i s  ra t io  is equal to 0.046. 
It follows from equation (4.49) that for  a slender body, when E can be 

= n,. Hence, for  a body immersed with constant velocity, 

nQh2hv41ni  . The induced mass  can 
P 

1 
P 

1 
Ir 

neglected, 

the p re s su re  force is 
df 

The integration is car r ied  out over the f r ee  surface from the body surface 
R to infinity. 

The free-surface velocity distribution can be found by the method of 
sources  and sinks. Thus, i f  a unit source Q is immersed vertically with 
constant velocity h ,  the pressure  on the s t ream surface containing the 
entire flow star t ing with the source will, for immersion (I of the source, 

be 

expression nR2h + Q ( l  - c ~ e , )  = Q, while - = tge,. For a slender body angle 

&cos4e,, where the source strength i s  determined from the 

R 

1 Ra 
16 a2 

is small, and approximately P ,  = n, = Q ~ R W -  . - 

21. Fall of a body on the surface of a fluid 

Consider the simplest  case of symmetric f a l l  of a body with mass  M, on 
the surface of a fluid. Suppose, a t  the f i r s t  contact ( t = 0), the body has 
velocity V,,. If we neglect the weight of the body and the fluid, the 
equation of motion has the form 

Mb% = - P. 

Drag P is a function of the shape of the body and for the shape at  hand 

Integration with respect to t ime using initial conditions yields the 
P = P (h .  I;. irj . 
following expressions for  the momentum and energy: 

M , ( V - V J =  - Pdr=- - -B( t ) ;  
jl 
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These equations make i t  possible, in principle, t o  calculate f o r  each instant 
the velocity V ( t ) ,  momentum 5 ( t )  and kinetic energy T ( t )  of the fluid. 
However, these quantities cannot be expressed in  t e r m s  of the instantaneous 

values of the induced m a s s  by the expressions B = m* Vand T = m* F, since 

he re  the two equations (energy and momentum) are incompatible. If we 
sti l l  u s e  these expressions for 5 and T ,  then, from the momentum equation, 

the velocity following impact will be V = V,, &-, where F =E Here the 
Mb 

kinetic energy of the body-fluid system following impact will be sma l l e r  
than the kinetic energy of the body preceding impact by the ”lost” energy 

-- . But loss of energy is incompatible with potentiality of impact- 
2 I + C  

induced flow. F o r  cases  of immersion of sharp-nosed bodies this “paradox“ 
is eliminated for  an incompressible fluid by allowance for the momentum 
and energy of the spray sheet, as shown in Section 16.  It remains to clarify 
the question of impact of bodies coming in contact with the fluid 
simultaneously over their  entire surface, such as a disk or plate. If the 
body and fluid are incompressible, then formally, from the known impact 
theory, the entire momentum and the entire kinetic energy are determined 
by the induced mass,  there  is no spray, and the above “paradox” cannot be 
eliminated. A more  detailed study shows that allowance for compressibility 
must be made i n  the case of simultaneous contact of the surface of the body 
and the fluid. The ”lost” energy is found to be ca r r i ed  away by a shock wave 
and i t s  magnitude does not depend on the speed of sound. 

22. Principal equations for compressible fluids 

Flows with velocity potential rp = ‘p (x, y. z .  I ) obey the continuity equation 

2 + div (et? = 0, where = grad rp, and the Cauchy- Lagrange integral is 

The p res su re  ratio s for  quite poorly compressible fluids is very small;  
hence p = eo(l  + s) and p = p,, +xs, where x is the bulk elasticity modulus 
( X  = eo g), while QO and pa are respectively the density and p res su re  of the 
undisturbed fluid. For s <  1 the p re s su re  function is 

!$ = g j’ &= $ s + const = css + const = + const, 
Po 

where c is the speed of sound. 

attendant to short-duration impact that, for  v<<c, the te rm + v x  is small  

It can be shown by estimating the t e r m s  in the expression f o r  pressure  

compared with a * and j’$; for a fluid a t  r e s t  at infinity F ( t )  = 5. Hence 

differentiation of the p re s su re  equation yields 
V O  
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To the same degree of approximation we se t  in the continuity equation 
- 

div(Q;)=eodivu. 

1 a P  u .  
Since 3 = 1. *, we derive 2 + P A T =  0. Eliminating 

Q 9 Po e0 

from these expressions yields the known wave equation 

(4 .53 )  

In the case  of spherical  symmetry,  when 9 = cp ( r l  t ) ,  the wave equation has 
the form 

Equations (4 .53 )  and (4 .54 )  pertain to  the field of acoustics. 

23. Simplest ca se  of impact 

Imagine a tapered tube with smal l  solid angle Q, bounded by rigid walls 
and filled with fluid at  all directions r > R. A mass  impacts a t  f ree  surface 
RQ with velocity V,.  
has the form 

The solution of wave equation (4 .54 )  for  diverging waves 

A 
cp - - - t ( c f  - r  + R). 

The excess p re s su re  in  the fluid is given by the expression 

Ac Ap = p ( r .  t )  - po = -e* = - Q T f’ (a - r  + R )  df 

(the pr ime denotes differentiation with respect t o  the argument). 
The radial  velocity is 

I 

Noting that -ev Ir. t )  = 1 Ap(r ,  i) lit and using the expression for  the radial  

velocity, we derive the known expression 
0 

pE + p. Ap(r. t )  dt. 
I j  

(1, t) = 924 

Now we establish the relationship obeyed by mass rn af te r  impact. 
Considering, due to  smallness  of Q ,  the motion along the ax is  of symmetry,  
we have the equation of motion 
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QRS The impacted surface is S = R Q ,  the induced m a s s  is QRQ and p = 

is the ratio of the induced m a s s  to the m a s s  of the impacting body. Using 

the expression m ( v O - v ( R . t ) l  = S f A p t R , t ) d t  and the expression for v ( R , t ) ,  and 

setting T=$. we have the equation 
( 8  

(4.55) 
du = + ( I  +p)u-uV,=O 

The solution of this equation with initial conditions t = 0 and velocity 
v = V' 1s 

(4.56) 

It is found that if on contact v = urn then with time, as  the wave front 

moves deeper into the fluid, u +  e. which corresponds to the case  of 

"hard" impact. Obviously, as in Section 21, the kinetic energy of the 
body as t + a  is 

The kinetic energy of the fluid is 

and the "lost" energy is 

We shall show that the "lost" energy is equal to the sum of the potential 
and kinetic energies ca r r i ed  away by the shock wave. The potential energy 

of compression of a volume of fluid is -$, and the kinetic energy is $, 
where u = 

AP = Q@,e -"+"$. Calculations yield 

while the p re s su re  in the acoustic wave at  r = R i s  
pc' 
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As was pointed out, the "lost" energy as ct - 00 does not depend on the 
value of c .  
speed of sound is infinite. This eliminates the previously mentioned 
''paradox.'l 

The above case  is of interest  only as an example f o r  gaining insight into 
the process  of impact. Actually impact of a body on a fluid is accompanied 
by generation of shock waves which move into the fluid as well as into the 
body. For bodies of complex configuration these shock waves a r e  partially 
reflected from structural  elements and set  the impacting body into complex 
oscillations. The study of oscillations of a body and conditions of i t s  strength 
on impact on water is a complex scientific and engineering problem. 

Postulating that the fluid is incompressible, we assume that the 

24. Limiting cases  of motion 

Experiments were carr ied out i n  which a disk with a very smal l  mass  was 
shot out perpendicular to  the water surface in such a manner that i t  
impacted on the surface over i t s  entire plane. The experiments were  ca r r i ed  
out in two versions. In the f i r s t  a spike w a s  placed in the water, a t  smal l  
depth, below the center of the disk. This spike stopped the disk when the 
la t ter  hit it. In the second version the spike was removed. High-speed 
photography showed that after hitting the spike (first version) a spray  
sheet r i s e s  from the edges of the disk and a cavity forms behind the latter.  
After the disk stopped, the cavities tore  away from the disk and within a 
short  t ime the cavity became almost spherical. When the spike was taken 
away (second version) the disk removed some of the surface of the cavity, 
the shape of which also tended to become spherical with time. Analysis of 
experimental data showed that the kinetic energy pnR3kZ corresponding to  
inertial  expansion of a hemisphere remains virtually constant during the 
entire expansion of the spherical  cavity, and equal to the kinetic energy 
lost by the disk. 

R, at the boundaries of the cavity was solved theoretically. For a near- 
spherical  axisymmetric cavity the deviation of i t s  spherical coordinates 
from a sphere with radius R can be expressed by a s e r i e s  in the form 
r -  R = E,P,(cos*) +. . . + ~ . P m ( c o s O ) ,  containing Legendre functions. The velocity 
potential is also expressed by a s e r i e s  containing functions of t he  form 

The problem of the limiting motion of a light disk of mass  m, and radius 

P ,  (COS*). Retaining only semiquadratic t e r m s  in the p re s su re  I R"+%l" 
n +  I P+' 

equation, defining the velocities as U, = 5. + 29 5, and using the equation of 

motion of a disk, we can find an approximate solution to  the problem in the 
form of equations: 

3 .  m .. yR2+ ( R  + * ) R  = 0; 

Since we considered cavities in the lower half-space (impact through a hole 
in a screen),  the second equation is valid only for  even n. 
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Without dwelling on the details  of the solution, we only point out its 
resul ts :  a)  the cavity shape tends to  spherical  as the body penetrates 
deeper into the fluid, when the body and fluid are weightless, while the 
p re s su re  inside the cavity is equal to  that in  the quiescent fluid; b) the 
induced m a s s  of a disk at the boundaries of an  expanding cavity increases  
in  proportion t o  the bubble [cavity] radius R ;  c )  as the cavity shape tends 
to  spherical, the  t ravel  of the disk center  is grea te r  than the bubble radius 

by an  amount tending to 5. 
nQR; 

The general methods and specific equations presented in this chapter 
allow one to calculate the hydrodynamic forces  acting on immersing bodies. 
In addition to forces ,  it  is also possible to calculate approximately the flow 
and the shape of the free surface. It is of importance that the integral  
effects, as the total forces,  momenta and energy, do not depend markedly 
on the potential distribution over the surface of the body, but instead i t  is 
necessary to select  a flow pattern which sat isf ies  all the general  equations 
and physical conditions within cer ta in  flow regions. This pertains 
particularly to the spray  root. 

flows. The most important of these consis ts  in the fact that the potential 
is "accumulated" at  the moving f r ee  boundaries during the entire motion. 
Hence a free-boundary flow cannot in general be stopped o r  induced 
instantaneously and is not determined uniquely by the value of normal 
velocities a t  the boundaries of a moving body. The induced mass  has  the 
same  physical sense  as in the c a s e  of bodies fully immersed in  an infinite 
fluid; the magnitude of the associated mass  is no longer a universal  constant 
for  a given body but depends also on the history of the motion. An ideal  
incompressible fluid with f ree  boundaries can be t reated as a system of 
mater ia l  points with ideal constraints, but in  general these constraints are 
not holonomic. The displacements of the body a r e  no longer generalized 
coordinates in the Lagrange equations, and the application of these 
equations is in general impossible. 

solving specific problems. In spite of the fact that above we considered 
constant-pressure free boundaries, the same  considerations apply to  a 
grea te r  o r  lesser extent to any surfaces  of discontinuity moving from the 
surface of a body into a fluid. 

Consideration must be given t o  the important features  of free-boundary 

Obviously, features  of free-boundary flows must be taken into account i n  
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Chapter Five 

DEVELOPED CAVITATION 

Developed cavitation a r i s e s  behind bodies rapidly immersed into a fluid 
o r  moving within a fluid at sufficiently high velocities; developed cavitation 
se t s  in also at  moderate velocities, i f  gas is injected at the r e a r  of the 
body.$$ A detailed physical description and analysis of mechanical aspects 
of the development of cavitation and, in particular, of developed cavitation 
a r e  given by Sedov 1191. 

problems, the subsequent presentation is based on approximate estimates,  
supported by experimental data. 
in 1141, where the main experimental data a r e  also given. 

formed i n i t s  leading part by smooth free jets separating from the body surface. 
Only in the trail ing part of the cavity, where i t s  boundaries join, does one 
see  a bubbling foam mass ,  which is carr ied away from the cavity together 
with the gas  and vapor. It was found by high-speed photography with small  
exposure t imes  that the cavity boundaries, even in the leading part, a r e  
hardly ever particularly smooth; they a r e  mottled by small disturbances, 
projections and droplets.  Hence below, in our  study of "macroproperties" 
of cavities, these will be schematized by assuming the free boundaries in 
the leading part to  be smooth. This representation corresponds to the 
ordinary formulation of jet flow problems. 

number,  which is defined a s  the ratio of the pressure  difference between 

the f r ee  s t r eam ( p , )  and the cavity (pk) to the velocity head 9 =  Q:. 

cavitation number is therefore u = m. 
part  of which is free of foam, form when 0 < 0 . 1 - 0 . 2 .  

In fact developed cavitation phenomena a r e  affected to  some extent by 
viscosity, surf ace tension, boiling temperature,  dissolved- gas  content 
and, at very high velocities, fluid compressibility. However, for fluids, 
such as water ,  at velocities not exceeding several  hundreds of meters  
per  second, moderate body dimensions and temperatures far from the 
boiling point, all the above factors a r e  practically inconsequential. This 
makes it possible to t reat  the fluid, in general  estimates of mechanical 
properties if  cavitation flows, as ideal and incompressible. A schematic 
of a cavity in a flow past a disk is shown in Figure 52. 

Since it is generally impossible to obtain exact solutions to  individual 

The gist of what follows was presented 

A developed cavity behind a body when observed visually appears to be 

An important physical characterist ic of cavitation flow is the cavitation 

The 

Developed cavities, the major 
eVs  

In the USSR, i n  1945, Epshtein obtained developed cavitation by the injection of gas. 
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FIGURE 52. 

0. deg 

' X O  

1. Cavity drag 

Experiments in cavitation [water] tunnels show that the drag coefficient 
of each body placed in a cavitation flow depends on the body shape and on 
the cavitation number. For bodies with smooth outlines (sphere,  ellipsoid, 
etc.) ,  Epshtein and Tseitlin noted that the line of streamline separation 
from a body surface is not given uniquely by specifying the body shape and 
cavitation number, and i t s  location depends on the properties of fluid 
adhesion to a body, absolute flow velocity, and various other causes .  The 
shifting of the separation line for  bodies with smooth outlines somewhat 
affects the drag coefficient. 

the drag coefficient in an ideal incompressible and weightless fluid depends 
solely on the cavitation number: 

When the body has  fixed streamline separation lines (disk, cone, etc.) ,  

_ _  ~ ~~~ 

0 5 10 15 20 30 45 
~ ~ ~~~~~~ 

0 607 0 465 0 82 0 78 0 75 0 I 1 5  0 68 
______ 

(5 .1)  

where the drag coefficient is referred t o  a r e a  S,, bounded by the s t ream-  
line separation line; for a disk with diameter d, = 2R, this a r e a  is S, = ,&. 
The drag coefficient attains its maximum value at u = 0 (c, = c ,~ ) ;  for a disk 
and cones, the flow past which occurs along the axis of symmetry,  the 
values of cx0 a r e  listed in Table 8 .  

Epshtein reduced experimental data and showed that the drag coefficient 
of a disk at nonzero cavitation numbers is expresse.d by the simple formula 
c,-cfl(l + a) = 0.82(1 + u ) .  
blunt-nosed cones, but for  very sha rp  cones and wedges i t  is more proper 
to use Sedov's formula, 
and cones can also be found in  1291.  

Apparently the same relationship applies for 

C , = C . ~ + O  1191. Experimental data for a disk 
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Special experiments showed that i f  the disk is inclined at  angle 6 t o  the 
undisturbed flow surface, then the pressure  force acting normally on the 
disk is W, = W,cosG, where W, is the drag of the disk, the plane of which is 
perpendicular to the direction of the undisturbed flow. Quantity W, is 
obtained from ( 5 . 1 ) .  
in the plane of angle 6,  we have 

Projecting force W, on moving n and y axes ,  lying 

W, = W, cos%, W ,  = W, cos 6 sin 6. (5 .2 )  

Experiments show that expressions ( 5 . 2 )  a r e  valid only for  6 < 4 5 -  50" .  

N o t e . 
theorem, i f  the distribution U, (r) of radial velocities at the disk surface 
is known. 

and trailing surface of a disk with radius R ~ ,  can be expressed in the form 

The drag of a disk at  d = 0 can be calculated from Bernoulli's 

The drag,  which is equal to  the pressure  difference at the leading 

To obtain agreement between this expression and the observational resul ts  

of Epshtein we assume that 

number,  while the velocity at the cavity boundaries is v, = v , m .  

- f (a) does not depend on the cavitation v, - 
Sub- 

= f ( u )  in the preceding expression for the drag yields 

Function 2 - f ( ~ )  can be expressed approximately by a parabola in the 

form k-8, selected so t h a t c , ~ P ~ - ~ p ( U ) ~ ~ ~ = ~ . a ~ ' c a l c u l a t i o n s  yield n =  4 . 5 5 .  

Fedorov's experiments with measuring the pressure  distribution at a 
drained disk showed that the above velocity distribution is close to  that 
actually observed. 

V k  - 1 

v, - 0 

2. Shape of an infinite axisymmetric cavity 

Axisymmetric flow of an infinite fluid past a disk at u = 0 corresponds 
to the well- known Kirchhoff two-dimensional f ree-  streamline flow. 
However, in the two-dimensional case one can obtain an exact solution, 
while its corresponding axisymmetrical  problem cannot be solved com- 
pletely, and the cavity outline is known only approximately. 

The shape of an axisymmetrical  finite-drag half-body was studied 
independently by Gurevich f 4  f and Levinson 111. 
that a half-body whose profile is R =  f ( x ) ,  placed in  an infinite parallel 
s t r eam along its Y axis of symmetry,  can have a finite drag  i f  a t  infinity 

( x -  a) the equation of the profile has  the form E = ,L const. Here the 

They derived the result 

F 
G 
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c 
constant is 

E = 

contour. 

can be obtained from energy considerations. 
kinetic energy of absolute motion of a fluid per unit length of the cavity 
meridian is constant, and equal to the work of external forces which 
overcome the drag while the body t ravels  through a unit path. Fo r  a 
uniformly moving body the cavity is treated a s  a wake, which contains 
the energy expended in overcoming the body drag. 
content far past the body should be constant and i ts  only form in the case 
under study should be kinetic. 

When pa = p o  ( u = O ) ,  the absolute velocity of boundary particle E is 

u, - V,sin $ while the normal velocity is u, = V o s i n a  = R ,  where a is the 

angle between the tangent to  the cavity boundary and the x axis,  and R and 
R a r e  respectively the distance from the x axis and the radial velocity of 
point 5 in i ts  absolute motion (Figure 53). 

1.34 i f  i t  is assumed that the disk radius i s  R,, = 1, while r = 2- and - R" 

R" 
a r e  understood to  denote the relative cylindrical coordinates of the 

Another derivation of the contour equation of an axisymmetrical cavity 
We can assume that the 

The specific energy 

FIGURE 53. 

The kinetic energy of the fluid within a flow tube start ing from points 
s and s+ d.s at the cavity boundary will, by assumption, be 

dT = - $ cp2nRRds = WVodf. (5.3) 

The relative velocity VI of the boundary particle is equal to  the t rans-  
lational velocity V ,  of the body; hence we can se t  V,dt = Vhdt= ds in (5.3). 
The variable part of the potential at points in space coinciding with the 

boundary is = - - .-. Substituting into boundary condition 2 + f.8 = 0, 

and replacing u by R by virtue of the smallness of angle a, w e  have 

W I  
nu RR 

Hence 

(5.4) 
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Constant of integration A can be determined i f  angle a at some point 
(R,, x , )  is known. 
this point be small .  

It was seen from processing photographs of the cavity formation 
behind a disk,  that the profile of the leading part of the cavity 

< 3 - 5  can be expressed approximately a s  R = R, I + 3 x  ‘ I s ,  and 

This condition is necessary in order that angle a at 

(k 1 ( 
this expression is valid for small  cavitation numbers ( o <  0.1).  

Selecting li?. = 2 a s  amatchingpoint we have %(l $3$)-’’’= 0 .274  and 
Rn 

R, = 1.92R,. 

profile equation for 2 > 2  has the form 

Substitution into (5.4) yields A =  0.845-lnRn.  The cavity 

Rn 

X - R, 0 0.5 1.0 2.0 5.0 7.5 10  1 5  

- 1.0 1.36 1.59 1.92 2.57 2.95 3.30 3.85 
R n  

( 5 . 5 )  

20 25 

4.35 4.8 

- 
where R = Q ’ .  

Rn 
The numerical values of coordinates of the cavity profile calculated 

f rom formula ( 5 . 5 )  a r e  listed in Table 9.  
in Figure 53; theoretical and experimental data are compared in 141. 

The profile is shown to scale 

N o t  e .  The matching point G- 2 w a s  selected arbitrarily. It would 
have been more  natural to subject the solution with constant A to  the 
condition that small  variations in < or  gl do not change the value of A ;  

this condition corresponds to  -- = 0. The empirical equation of the profile 

yields the expression ?-z = which, after substitution into (5.4) and dif- 

ferentiation, yields a condition for determiningthe matching point : = j?lcx; 

- _  - - 0. 
R ,  
small  at the matching point is not satisfied. 

dA 

dK 
dR 

d.4 

d I? I 
This yields G, = 1.1.  However, then the requirement that $be 

3. Application of the momentum theorem t o  the 
determination of the drag  and dimensions of a cavity 

Some useful information on flows with developed cavitation can be 
obtained by applying the momentum theorem. Consider a steady axisym- 
met r ic  cavity with nonzero cavitation number. We denote the p re s su re  
in the flow at infinity by pu, which is higher than pressure p r  within the 
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cavity. 
in the vicinity of the cavity the s t r eam velocity components a r e  IT, = V, + ux 
and V ,  = uyr where u, and < a r e  the perturbed velocities. 

The contour of a physical cavity behind a body (mouthpiece) NN with 
wake form in the trailing part is shown by solid l ines in Figure 54. 
wake flow behind the cavity, consisting of foamy, bubbling fluid, vapor 
and gas  o r ,  in some cases ,  of a vortex system, affects the entire 
cavitation flow. at present we shall 
consider the Ryabushinskii model, when a symmetric cavity is formed 
between two identical mouthpieces NN and N”’ (dashed l ines),  so that the 
cavity is symmetric relative to the plane KK. 

The s t r eam velocity at infinity is V,; a s  a result  of disturbances 

\ 

The 

This effect will be estimated la ter ;  

FIGURE 54. 

W e  apply the momentum theorem to a control surface formed by 
infinite plane C, f a r  ahead of the cavity and plane E,, intersecting the 
cavity along line A A .  The momentum theorem takes the form 

Application of the Bernoulli theorem yields an expression for pressure  
p in plane 2, at 

where the perturbed radial velocity is given by Gj - v: +u:. 
axial symmetry this velocity is identical at all planes passing through the 
x axis.  

By virtue of 
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The continuity equation for the fluid region bounded by planes E,, Z, and 
the cavity is 

nRiV, = u,dZ,. 
r,--nFf; 

Substitution of the expression for p and of the continuity equation into 
(5.6) gives 

00 

I 
, cavity is c , ,=uk.  In formula (5.8) k -  L---I-$-dZ. ShAP It is usually assumed 

- -2 

I, = S, (Po - pb) t s (2 - $) dZ, = S,Ap f ( x )  - I ,  (x ) .  
sr 

(5.7) 

For  a specified value of po-pk  = Ap formula (5.7) expresses the drag  I, in 
t e r m s  of the cross-sectional a r e a z f  the cavity S ,  = nR: and of the distribu- 
tion of perturbed velocities u, and uY within the fluid in plane 2,. 

surface extend to  infinity. 
the control surface by segment Zs of the cylinder surface. 

tum --p ~ ~ ~ ( V , + u . ) B n R &  should be added t o  the first part of (5.6), the flow 

rate  lv,2nR3dx (where x, is the abscissa of plane X, and x is the abscissa 

of p d n e  2 , )  should be added to  the right-hand side of the continuity equation. 
If we consider a finite cavity, then i t s  effect at  infinity is equivalent t o  a 

doublet, while the absolute velocity at distance I is of the order  of 4. If 
we maintain the difference x - x ,  constant and allow Rs to increase without 
l imit ,  then the integrals of segments of control surface 2, will decrease  

as and can be  neglected. 

It is assumed in the derivation of (5.7) that planes Z, and 2, of the control 

Then the momen- 
Actually, however, it is more co r rec t  to  close 

X-1' 

1 

4. Corollaries of the momentum theorem 

Obviously, drag W, of mouthpiece NN (Figure 54) does not depend on the 
abscissa  of control surface 2,. 
the  maximum c r o s s  section KK of the cavity, w e  derive the known formula 

Hence i f  th is  plane is drawn through 

co 

(5.8) W, = ~$3.4 ( I  + u) = ScAp - $ dZ, = S,Apk. 
% 

The drag coefficient referred t o  the maximum cross section of the 

34 that k = k(u); however, the calculations using this function a r e  insufficiently 
reliable. Theoretical estimates with the aid of sources and sinks show that 
0.875 < k <  1.0. Reichardt obtained experimentally k s  1.0 for u < O . l .  
Epshtein assumes  that for  low u, k 3  0.9. 
k = 0.96- 1.0. 
resul ts  of experiments beneath the f r ee  surface by the method of low-velocity 

According t o  the present author, 
It should be  noted that experimental determination of k f rom 
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cavitation involves certain difficulties. 
cavity results in some increase in its diameter;  a large-diameter cavity 
in the vicinity of the f r ee  surface deforms the la t ter  and produces optical 
distortions which result in an apparent increase in diameter.  

with immersions of += 15-  30 and Froude numbers Fr= - "' = 1 2 - 1 9  

showed that k is close to unity a s  a -, 0 .  Subsequently k wil l  be regarded 
a s  close to  unity ( k 2 0 . 9 6 -  1.0). 

The so- called "surfacing" of a 

Experiments 

n 

Formula ( 5 . 8 )  yields an expression for  the maximum cavity c ros s  section 

( 5 . 9 )  

which can be used to calculate the diameter of an axisymmetric cavity 

The theoretical results and data obtained experimentally by this author 
The experimental data were obtained for dif- a r e  compared in Figure 5 5 .  

ferent depths of disk immersion: -= 16- 30 ( l ) ,  = 15 ( 2 ) ,  and H H 

dn n 
H _ -  - 3 ( 3 ) .  Due to deformation of the free  surface and optical distortions 
do 

the cavity diameter is overestimated for small  o .  

I I  I I "  
~ ~ 

0 Q 03 0.05 808 6 
FIGURE 55.  

W e  considered only axisymmetric flow. However, the momentum 
theorem can also be used for calculating the effect of an asymmetric flow 
subjected to  gravity o r  l i f t  forces.  

5. General equation for cavity expansion 

It is impossible to obtain an exact equation for the profile of an axisym- 
met r ic  cavity. 
is possible to derive an approximation equation for their  profile. 
follow the expansion of some c ross  section S , ( t )  of a cavity within stationary 

However, since cavities at low u a r e  highly elongated it 
Let u s  
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plane E; which, at the t ime in question, coincides with plane 2, moving 

together with the body (see Figures 5 4  and 5 6 ) .  In the 2; plane f = 2 V 0 = 2 n R x .  

The total derivative of surface S, ,  i f  its contour is related t o  particles 5 ,  
can be expressed in the form 

dS dS dR 
d l  ax 

If the velocity potential at the contour of cross-sectional a r e a  S, is c p ( r ) ,  
then the kinetic energy is 

I I dSx dT0 = - -T e ~ p  ( t )  2xR ( t )  U , ~ S  = - - (t) - dx. 2 dl 

We shall  show that equation ( 5 . 7 ) ,  obtained by applying the momentum 
theorem, can be  represented as an energy equation for an isolated c ros s  
section of the cavity. To evaluate the integral I , @ )  in ( 5 . 7 )  it is possible 

t o  replace !& in the integrand involving the t rue  radial velocity Gv, by the 

rate  of "cylindrical" expansion vr- 7.x, because in the plane of integra- 

tion z# < U, for  any 

5 

I 2 
R dR 

I Y , > R .  This yields the inequality 
I 

asx ,is 
At low o the values of 7 and $ a r e  close to  one another. For a steady 

cavity (see Figure 54)  the absolute velocity at t h e  boundary is V=vo+v,. 
The radial velocity of the particle is oY = $ =Vk sin a ,  and the longitudinal 

velocity u,=V,cosa-  V , ,  where a is the angle of the tangent t o  the x axis. 
The projections in the normal and tangential directions a re  respectively 
v, = V, sin a and v ,  = V k  - V,, cos a . 

5 

I 
FIGURE 56. 



where allowance is made for the fact that the velocity potential at the 

cavity boundary is q = - vvdy . 
-- - 

Expression (5.7) of the" momentum theorem contains the integral I X ( x ) ,  
1 ( X )  

U S ,  
which is taken into account by the expression k, = 1 -L, which takes on 

the value of k at the maximum c r o s s  section of the cavity. 
shown that along any straight line, parallel to the x axis and at a distance 
from it larger  than R,, velocity u, attains i t s  maximum in the plane of the 
maximum c r o s s  section of the cavity. Hence w e  shall assume that in the 
central part of the cavity k , s k ,  and since the value of k is close to unity 
k, is also close to  unity. Quantities K and k, se rve  a s  correction factors.  

form 

It can be 

Expression (5.7) of the momentum theorem can now be expressed in the 

(5.10) 
I as 

Here,  in addition to  the above, it is assumed that 
function 0 ( t )  has been introduced in o rde r  to  replace the preceding inequality 
for I , ( x )  by 

+ = APS, (tb) = APS, (t)  - Qcp ( t )  + 0 (t). 

k 
= 1. "Correction1' 

It is clear  that @(( t )<  1.0 along the entire cavity. As  the cavitation 
number is decreased for a fixed velocity of a flow with Ap + 0, the t e r m  

ApS,- 0 for all finite x .  

(5.10) is transformed into equation (5.3). 
the "correction" function should depend on the cavitation number a .  

then taking a s  the t ime origin ( t  = 0)  the instant when this plane is passed 
by point (x,, R,)  of the cavity we have V d  + x ,  = x, where the origin of x is 
set  at the center of the disk (Figure 56). 

Equation (5.10) has been derived for a steady axisymmetric cavity. 
However, this equation can be interpreted as a general  energy equation. 

The sum of the potential (ApS, = 9) and kinetic (- ax = - T w$) energy per 

unit length of cavity is equal to  the work of forces overcoming the drag a s  

the body moves through the same  unit length (3 = - W o ) .  This yields the 
approximate equation of the cavity 

If it is further assumed that @ ( t ) -  +, then equation 

Hence one may conclude that 

Since the expansion of section S, is considered in the stationary plane Zi, 

' dT ,  1 dS 

The velocity potential cp in the preceding equations can be calculated i f  
the potential at a given point of the cavity surface is known. Since the 
cavity is symmetric relative t o  the maximum c r o s s  section, it can be 
assumed that for points x = xk = L, (see Figure 56) qk= 0.  Fo r  a steady cavity 

' k  sb 

cpw = - j u,ds = - j ( v k  - V " C 0 s a )  ds = - v ,  (Sr - s)  + V 0 ( X k  - X) .  (5.11) 
I 
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where xk and sk a r e  respectively the abscissa and length of a r c  of the 
maximum c ross  section, while x and s a r e  the abscissa  and length of a r c  
of c ros s  section S,. 

Potential cp can also be calculated by considering the absolute motion 
of points on contour s, on the basis  of the Cauchy-Lagrange integral 

Derivative L o r  a stationary point in space is expressed in t e r m s  
dtl ILdi 

dtl,,", - of derivative * at the point moving together with the  boundary by the 

expression * d; where 3 = $, since the points of the 

' d R  1 contour l ie  in the plane 2;. Hence $ = $ + RF - 
respect to  t ime and assuming cp = 0 when t = tk finally gives 

= * %,, ~--p- '  
u p .  Integrating with 

(5.12) 

For a steady cavity expressions (5.11) and (5.12) a r e  identical. 

6.  
profile and length 

Approximation equation of the cavity 

The simplest  solution of equation (5.10) can be obtained by setting 
Apt, 1 - 1 

'p = - 

O(t )  = x .  In fact 

should be found f rom the condition that the cavity contour passes  through 
some specified point R = R, at t=  0 .  

( -) and taking the "correction" function equal to some constant, 

dR' ~ = -, where U- 1 -L. The constant of integration 
t k  2 

R : - R  
Th 

t b  

As a result  

(5.13) 

The contour equation R ( t )  and the derivative R (t)  is found f rom (5.13): 

R = R,d 1 - ( 1  - $,\ (1 - k) (,,, ; 
(5.14) 

Here  it is the absolute value (1 - k) which is raised to the fractional 

power. Formulas (5.14) in this form make it possible to calculate the 
I 

b ' k  
cavity profile a lso when -i-> 1, but usually when L > 1 . 5  the boundaries 

of the cavity a r e  indeterminate, since they s t a r t  breaking up and foam 
begins t o  form.  

cavity,more precisely, 1,  = Vdb .  F o r  this we match at t = 0 the contour expressed 
The second of formulas (5.14) canbe  used to determine the half-length ofthe 
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1 

by (5.14) with that of the leading part  of the "empirical" cavity R = R, 1 + 3 - 

which, as was noted in  Section 2, is universal in the sense that at  low x i t  does not 
depend on (I. A s  i n  Section 3, by selecting x1 = 2R, as our matching point we obtain 

R, = 1.92R,, and RR' - T .  Using these conditions and employing (5.9) we have 

(2)'- c x . ( ~ o + o '  , and substitution into the second of formulas (5.14) at t =  0 

yields 

[ k r  

R.' 

Rn Rn k ( I -  H i C &  R:ko ( I  + 0) 1 * 

I,O R ,  c," ( 1  + 01 _=_.- 

If the abscissa  of the matchingpoint is x = xl, then the cavity half-length 
is Lk = I h  + xl, in which case  

L" 6 
R" 
- 

1.5 

1.0 

Calculation of constants a and b requires  selecting the "correction" factor 

x and matchingpoint R, = R ( x , )  on the cavity contour at  o = 0 ,  o r  i f  3 is a smal l  

quantity, at  the "empirical" contour R= R, ( 1 + 3 k)". In principle the match- 

ing point should be selected so  as to  satisfy the condition 2 = 0 ,  since the 

cavity length cannot depend on the purely a rb i t ra ry  point ( x , ,  R,). 
select  x ,  = 2R, and ic = 0.85, then the experimental data will be satisfactorily 
expressed by (5.13), as is evident f rom Figure 57, taken from / 4 / .  Under 
these conditions one obtains t o  some degree of approximation the expression 

1 R, 

dL 

If we 

-- LP - 1.92- 3a, which is compared with experimental data in Figure 58. 
R 

+ r r i g . 0  
I\ 

0 0  I-&? 0 ----- 
* 

0.25 0.50 0.75 t 
t ,  

FIGURE 57. FIGURE 58. 
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Figure 53 shows the outlines of a cavity at o = 0.1,  o =  0.05 and 0 = 0 . 0 1  
calculated from formulas (5.14) at x =  0.85, ;=2. 
formed behind a disk but past some other symmetric body, such a s  a cone, 
formulas (5.14) a r e  also valid, but then a and b should be calculated for the 
specific case,  since L,  will now be somewhat different. 

The values of coefficients a and b in (5.15) can be calculated also f rom 
other considerations, a s  well a s  by reduction of experimental data. Values 
of a = 1.53 and b = 0.42 were obtained in 1952 from the potential distribution 
along boundaries of the cavity and disk 141. On the basis of his  experi- 
ments at  low relative velocities for a weightless fluid, Epshtein recom- 
mends the formula 

When the cavity is not 

Al l  studies yield an estimate of the cavity half-length in the form 

= a - bo ; L a  

R, 
different but close values (see F igure  58). 

according to  different sources ,  coefficients a and b have 

7. Cavitation energy 

Differentiating the sum of specific potential and kinetic energies LI' + T' 
along the cavity axis and adding to  i t  the kinetic energy of the fluid along a 
streamline-formed surface separating from the disk edges and equal to 

m* 
vi ' 

we obtain the total energy 

v', E - (0. + T ' ) d x  + m* T .  
Lk 

F o r  a highly elongated cavity ((I -+ 0) E =  w&,= kb&Lh, i. e . ,  the work 
expended by the external energy source in overcoming the drag W, is spent 
on statically expanding the cavity t o  a volume Oh = pS,L., (pis the filling 

factor, the work is expressed a s  U = 

kinetic energy T = T'dx + m* to  the fluid. Using the standard notation, 

we can express t h e k n e t i c  energy in t e r m s  of the induced mass  A,, = of 

U ' d x  = APOh ) and on imparting 
vi  Lk 

the entire cavity. vi 
Setting k = 1, we find for half the cavity 

(5.16) h,,=Q(JSkLk(l - p ) = e T R n T .  n 3 1  

The filling factor is = - nR2dx; integration of (5.14) yields the 
' k L k  ' S  Lh 

value p =  0 .7  a s  a -  0 and x = 0.85. 
of (5.16) was obtained by substitution of S, and Lk from (5.9) and (5.15). 

about the cavity, expressed by this quantity, cannot be changed by instan- 
taneously varying the motion of the disk. 

The expression on the right-hand side 

The induced mass  h,, and the kinetic energy of absolute motion of the fluid 

The cavity retains the "motion 

The cavitation induced mass of the disk m* is equal to 2.52 pRt/4/.  



history' '  of the body with i ts  associated phenomenon of "heredity." Had a 
solid body been constructed which coincided with the cavity boundary, then 
the induced m a s s  A,, f o r  such a body would have had the usual meaning; 
the flow of the fluid and the kinetic energy T in this case would have been 
determined uniquely by the motion of the body. 

I t  can be concluded f rom formula (5.16) that the longitudinal induced 
mass  for elongated bodies coinciding with the boundaries of the disk and 
cavity is quite small: the volume of the induced mass ,  referred to the 
volume of the body, is approximately h,,/e 0, 0.430. 

8. 
of a cavity 

The principle of "independent expansion" 

The principle of "independent expansion" of a cavity consists in the 
following: each c ross  section of the cavity expands relative to the path 
of the body center almost independently of the subsequent o r  preceding 
motion of the body, and is governed by a relationship which depends only 
on the difference between the pressure  at infinity and in the cavity, on 
the velocity, and on the dimensions and the drag of the body at  the t ime it 
passes the plane of the cavity c r o s s  section under study. This postulate 
is essentially approximate and cannot be proven rigorously, but is more  
exact, the closer the body motion is to being rectilinear and uniform. 

principle; derivationof the law of expansion of an infinite cavity (Section 3)  of 
a finite cavity (Sections 5 and 6) and, directly, the energy equation (5.10) for a 
given cavity c ros s  section, which is just the formulation of the principle 
of independent expansion. 
of some c ross  section S, = S;(f - I,) of a cavity, the plane of which was 
t raversed by the body at t ime t,. 
R , ,  velocity V I ,  drag W,, p ressure  in the cavity Ap= const, and fluid density 
e .  
calculated from (5.14), which yields R ( & ,  f) = R,f A, y], where 

Rk = rz, while f k  is found from the expression 3 = a - b2*, obtainable 

from (5.15). 

entirely the effect of neighboring c ross  sections E l . E 2 ,  . . . ,E,, of the cavity 
on the motion of section E under study. 
5 is affected, in addition to  quantities R,. V ,  and W ,  corresponding to  the t ime 
of passing of c ros s  section E,. also by the moiion of the adjoining l aye r s .  
In principle this effect can be expressed by some "correlation function, 'I 
which takes into account the effect of deviations in the radius of the body, 
velocity and drag on R1, V ,  and W, during the preceding and subsequent t imes .  
When using formulas (5.14) and (5.15) to calculate an unsteady cavity on the 
basis  of the independence principle we simply assume that the correlation 
function for  an unsteady cavity remains the same as it was for the steady 
cavity. We shall now il lustrate some applications of the principle of 
independence. 

The preceding discussion is involved in the formulation of the independence 

Suppose we wish to  establish the law of expansion 

At this t ime the body possessed dimension 

Applying formally the principle of independence, S, = nR*(E,t) can be 

[ QR:Ap 

4 V l  Qv: 

This creates  the impression that the principle of independence disregards 

In fact ,  the motion of c r o s s  section 
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1. Suppose a disk moves in a straight line with constant acceleration 
dl' 

constant, then over a period t =  t , - f , ,  the disk would have moved distance 

xl= V,,f from section SI under study; this can be determined, for example, 
from (5.14). 

travel a distance x; = V& + 7 = x, 1 + - , when the law governing the 

expansion of SI remains the same a s  for motion with constant velocity (V = V"). 
Hence the cavity is more elongated during acceleration and more  com- 
pressed during retardation. 

versed by the body the velocities V,, v,, V, ,  . . . , V i  and times t , , t2 , ts ,  . . . t i  at 
which these points a r e  t raversed.  
path point x,  can be obtained from (5.14) by substituting for t the difference 
f - f ,  > 0 .  

w and that at t ime to it has velocity V o .  Had this velocity remained 
d l  

Since it moves with some acceleration, the disk will actually 
W P  

( 

In actual calculations it is required to  find for points x, ,  x2 .  x s , .  . . , x i  t r a -  

The expansion of the c ros s  section at 

The t ime of complete expansion t,, can be found from the expression 

(5.17) 

The maximum cavity radius is obtained from 

and the radius of the c r o s s  section from 

the form of the function, on the basis  of the independence principle, remains 
the same  a s  for  a steady cavity. 

2 .  F o r  a disk moving in a curved path but with constant speed, the 
contour of a steady cavity is constructed with the path treated as the body 
axis.  The cavity for accelerated motion over a curved path is constructed 
in Figure 59. 
different conditions have always yielded satisfactory results 14 J .  

Experimental checks of the independence principle under 

R l  6-0 

0 X 

- - - Accelerated Decelerated motion --__ 
motion Steady motion / 

1 
FIGURE 59. 
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On impact acceleration or stopping of the disk the boundaries of the cavity 
at  the disk break up and a r e  highly distorted; 
remain,  for some t ime,  the s a m e  a s  i f  the disk would have continued 
moving / 4  1 .  

far ther  par ts  of the cavity 

9. Cavity sealing and wake f low 

The cavity at i t s  central  part  is approximately symmetr ic  relative to i t s  
maximum c r o s s  section. 

contour the ratio f can range from ze ro  a t  the matchingpoint (xl. R,) t o  

approximately 1 . 5 ;  at high the cavity is usually very agitated, filled 

with spray and foam, which is ejected from the region of wake formation. 
However, the length of a "smooth" cavity, free of spray and foam, is not 
fully defined and depends to  a l a rge  extent on the conditions of formation 
and conditions of sealing of the cavity. 

F r o m  the standpoint of the principle of independence the formation of a 
cavity can be schematized as follows. A body upon passing through some 
stationary plane generates an elementary cavity which expands by inertia,  
overcoming the external excess  pressure Ap = p o  - p c .  
the kinetic energy supply is exhausted, the cavity attains its maximum 
c r o s s  section, after which the cavity s t a r t s  narrowing down due to  p re s su re  
Ap. 
result  of collision of the opposing boundaries. 

unsteady; it periodically s t re tches  and contracts, leaving behind eddy 
clusters  of various dimensions, containing bubbles of gases  ejected from 
the cavity. 
reentrant-jet  model does not represent the actual flow pattern within the 
cavity, apparently due to the inherent instability of this type of flow. 
However, i f  a high-speed motion picture is taken of the trail ing part  of 
the cavity and then projected at the usual speed, one notices the periodic 
appearance and disappearance of reentrant jets,  which flow forward from 
the cavity sealing region. 

symmetric;  i t s  c r o s s  sections a r e  distorted and the cavity rises somewhat. 
Under certain conditions hollow vortices form in the trailing part  of a f r ee  
cavity which does not close at some solid body. 
vortices,  which a r e  not always visible, occurs  also in flows past an 
inclined disk or other body, i. e. ,  a t  the onset of lift. 
ejection from a cavity depends on the flow pattern which develops in its 
trailing part .  

Hence in the theoretical calculation of the cavity 

h 

After some t ime ( t P )  

This compression dis tor ts  the c ros s  section and wake flow forms a s  a 

Experiments show that the trail ing part of the cavity is essentially 

I t  is interesting to  note that the theoretically postulated 

In a heavy fluid even the leading part of the cavity does not remain 

The generation of these 

The rate of gas  

10. Structural details of cavities in  a heavy fluid 

The s t ructure  of cavities in a heavy fluid, in a gravity field with gravita- 
tional acceleration g, differs somewhat f r o m  that of the previously discussed 
cavities in a weightless fluid. The most elementary considerations show 



that a cavity with volume 0, should have a buoyancy lift of A, = egok. 
ever ,  a constant pressure  pk acts within the cavity, and the projection of 
resultant p re s su re  forces  at the boundaries of the cavity and disk along the 
y axis is found to  be zero.  The Bernoulli equation, composed for  s t ream-  
l ines  extending along the top and the bottom boundaries of a cavity, yields 

How- 

and hence the tangential velocity V ,  > V ,  andavelocitycirculation r = #v ,ds  131a 
takes place about the cavity. The lift of cavity layer d r  i s ,  according t o  
Zhukovskii's formula,  Qrv&; this force acts downward on the cavity and 
is balanced by the buoyancy force egS*dr, where S* i s  the a r e a  of the 
section cut in the cavity by plane x ,  y (Figure 6 0 ) .  

tions r = gs*. 

Since q ( V l - V J  +gCy, -y,)=O. d l - = ( V s - V l ) d x ,  introduction of the average 

velocity Vav= a ( V ,  +V2) and integration over the entire length of the cavity 

gives the expression 

From these considera- 

A s imilar  result  is obtained from the Bernoulli equation. 
VO 

(5.18) 

FIGURE 60 

The velocity circulation over any fluid contour encompassing each wake 
vortex is clearly also r. Actually i t  is quite immaterial what form is taken 
by the wake of the cavity, whether hollow vortices or a mixture of gas and 
liquid. The onset of velocity circulation r around a cavity in the longitudinal 
plane x .  y also brings about the appearance of such a circulation along the 
contour embracing completely the single-valued wake. 
along a contour embracing the entire wake is zero. 

then the distance between them br would have been obtained from Zhukovskii's 

theorem, since A, = Qrb,VO, and from formula (5.18) b,  = Tt. 

The circulation 

Had two vortex filaments (of ze ro  diameter) formed behind the wake, 

0 
These vortex 
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filaments would have absolute velocity ur = 

sine of the angle made by the filament axes  with the x axis would be c. 

sequently by Epshtein 171 as a basis  for the theory of l o s s  of gas  along 
vortex fi laments.  It should, however, be remembered that in the case  
of hollow filaments or  a finite eddy region past the cavity the expressions 
for  br and ur are different. 

The dimensionless cr i ter ion for the effect of fluid downstream f rom 
weight on cavitation flow can be expressed by the rat io  of the drag W,, which 
virtually does not depend on weight, t o  the force  A,, which is entirely due 
t o  fluid weight: 

far f rom the cavity, and the 
"r 

2nbr 

The above relationships were used by Cox and Clayden 1271 and sub- 

(5.19) 

The Froude number is based on the mouthpiece diameter  do Fr = e) and 

does not at  all descr ibe the effect of fluid weight for developed 
cavitating flows. 

related t o  the f i rs t  cri terion) could be the minimum cavitation number aIllin. 
In order  that a dynamic pressure  minimum would not exist within the 
fluid it is necessary that the dynamic pressure  gradient at the  cavity 
boundaries should coincide with the normal  directed into the fluid. To 
satisfy this  condition we required VI& V,, at point ylmax. 
pressure  pU of the free flow to the center of the disk and expressing the 

Po - P I  cavitation number as o - - ev; ,we  obtain 
2 

( m  
Another cr i ter ion for the effect of weight (which, however, is 

Referring the s ta t ic  

- 

In the limiting case  when VI = V ,  and 2y, , , ,=~ , ,  the minimum cavitation 
number is 

(5.20) 

Relationship (5.20) is equivalent t o  the condition po - pa > egR,; 
cavitation, no mat te r  how large the volume of gas  injected, the actual 
cavitation number u will always be l a rge r  than urnin. It is shown below 

that the rat io  - is also convenient for describing the  effect of fluid 

weight. 

for gaseous 

RL, 

v', 

11. Rising of the cavity 

A cavity moving in a heavy fluid deforms and i t s  ax is  acquires  
a curvature. 
of the cavity; in the first approximation this effect  can be estimated quite 
simply. 

Upward curving of the ax is  is equivalent t o  r is ing 

Considering the t ransverse  motion of unit length of a cavity 
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with radius R and assuming that the t ransverse flow is equivalent to the flow 
past a cylinder, we find the "momentumt' pnRZV, of unit length of cavity, 

which should be equal to the momentum of the buoyancy fo rces  pgn s R'dt. 

Thus, the vertical  r i s e  ra te  is h =  V ,  =Q 1 R x d f ,  and the extent of d e  r i s e  

of the cavity center relative t o  the center :f the  disk is h = { V & t .  For a 

steady cavity, since dx = VLt, we have 

I 

I 

0 

X 
0 - 

Lk 

where O k ( x )  is the cavity volume along the longitudinal-axis segment extend- 
ing from 0 to x .  

tion that -Oo,(x,) = nR2 (xl) , where x1 > L k .  

h'<e and the r i s e  is h < e .  

It is possible to  find some value x = x, f rom the considera- 
1 
XI 

Obviously, for all x <  x,  we have 

v i  2v; 
The cavity r i s e  can be calculated more  precisely from (5.14): 

0.5 1.0 1.5 1.9 

(5.21) 

0 

In the coordinate system x .  y with origin at the center of the maximum 

cavity c ros s  section at x = 1 and - + 0 (for very small c r )  the r i s e  can be 

calculated from the expression 

R: 
R: 

0 .125  0.500 1.220 1.81 

(5.22) 

where 5 = t, and integration in (5.2 1) is carr ied out from 5 = - F-. 
b 

h Table 10 l i s t s  calculated values of the relative rise E =  - calculated 
gL: ' 
v: 
- 

from formula (5.22) in a coordinate system with origin at the disk center 
( x  = x, + L k ) .  

r (e)=; I 0 I 0.068 I 0.293 I 0.785 1 1.97 

Some remarks  a r e  called for on the physical nature of cavity rising. 
First, the above calculation of rising assumes  that each section 
expands according to  the same  laws a s  in a weightless fluid. In fact, 
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the mean pressure  Ap decreases  a s  the cavity continues to  r i s e  and the law 
governing the expansion of the c ros s  section will be somewhat different. 
Secondly, the cavity c r o s s  section deforms during rising, and a neck fo rms  
in the bottom part  and breaks up into spray and foam in the sealing region. 
As  a result of these factors  the above calculation of cavity r i s e  should be 
treated as  an approximation, valid over approximately 
length. 

of the total cavity 
The resul ts  of computations a r e  shown in Figure 61. 

0.5 1.0 
I 6 a 0.04 

FIGURE 61. 

N o t  e . Taking note of the imperfection of the above theory of rising a s  
applied to  the trailing part of the cavity, Epshtein suggested that this  
phenomenon be approached from the viewpoint of the linear theory of wings 
with small  aspect ra t ios .  However, he failed to note that the linear theory 
of such wings is based on the very same momentum theorem; hence 
QgOk ( x )  = lunR' ( x )  V ,  ( x ) ] V , ,  which yields the previous formulas.  

12. Cavity downwash in asymmetr ic  flow 

The l i f t  W, produced at a mouthpiece asymmetr ic  to  the flow resul ts  in 
downwash of the cavity. 
momentum W,t produces an equal and oppositely directed wake momentum 
behind the body: for a cavity with circular  c ros s  section this momentum 
is approximately V , t p n R V , .  This yields the expression for the inclination 
of the cavity axis 

According to  the momentum theorem, the lift 

(5 .23)  
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F o r  a steady cavity the expression for R( x )  is also obtainable from (5.14) 
and the l inear t ravel  is obtained by integrating equation (5.23): 

(5.24) 

The formulas of this section a r e  valid t o  the same degree a s  those of 
Section 11 for cavity r ise .  These conclusions cannot be applied directly to  
the r e a r  of the cavity. 

13. The general  case of t ransverse motion of a cavity 

The cavity motions examined in Sections 11 and 1 2  are  the most elementary 
cases  f rom a wide class  of possible t ransverse deformations of a cavity. 
Transverse  deformations a r e  associated with rising and the onset of lift,  
a s  well a s  other perturbing factors.  In o rde r  t o  show that this is so,  we 
shall  express the momentum theorem for the same control surface as w a s  
considered in Section 3 (seeFigure 54), but shall now determine the force 
acting on the body and cavity along the y axis. 
along control surfaces  Z, and Z, do not yield force components along the y 
axis,  we derive the following expression for the momentum flux: 

Since the integrals of motion 

W e  recall  that V ,  is the flow velocity at an infinite distance upstream, 
while v, and uy a r e  perturbed velocities, which in this case refer  to planes 
2, and 2 , .  

is a doublet, the integral of V,u, at this  plane will be zero. 
at the cavity boundaries v r < V , ,  and hence the integral of V,,uSr over plane 
2,  can be neglected compared with the integral of vZvu.  

When plane Z , i s  moved upstream to infinity, i f  the flow at infinity 
Even 

The following should be noted as regards integral [ v u d Z .  Insection3 we 

considered axisymmetric flows, and hence velocity zg w a s  radial .  
the  case at hand we consider a flow and cavity symmetric relative to  the 
x ,  plane, and hence W, = 0,  while uy is simply the vertical component of 
that part of the perturbed velocity which is due t o  asymmetry of the flow. 

In 

Consequently, the integral Q v&Z = K ,  can be treated a s  the y component of 

the fluid momentum in a layer of unit thickness. 

mately by means of the principle of plane sections. 

the momentum of a plane section is K, = - e  j cpcos8b + B,, where 

the integral designated as B, is taken over the inner contour s of the 
cavity, formed by a section of the Z, plane, while B, is a s imilar  integral, 
taken over an infinitely f a r  contour embracing contour s ( see  Section 9 of 

1, ! 
The t ransverse motion of a highly elongated cavity is now treated approxi- 

A s  is known, 
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Chapter Two). 
to  obtain the condition E ,  = 0.  

By selecting an external contour in  the Z2 plane it is possible 

Thus, the momentum theorem yields the approximate expression 

( 5 . 2 5 )  

Condition ( 5 . 2 5 )  should be satisfied for any section of the cavity cut by a plane 
parallel to the yz plane. 
ds = RdO, where O is the angle between the positive y direction and the normal 
to  the boundary at point S. 

In flow past a disk at angle 6 force W , i s  directed upward (it is greater  
than zero) ,  while the perturbed motion of the cavity is directed downward. 
When the cavity r i s e s  the hydrodynamic force is directed downward (opposing 
the buoyancy force),  while the perturbed motion of the cavity is upward. 

In order  to gain a c l ea re r  insight into the perturbed motion of the cavity 
boundaries we shall consider this problem in more detail,  assuming that 
the almost plane potential fluid flow in the t ransverse plane is generated 
a s  a result  of small  departures of the boundary from i ts  initial c i rcular  
c r o s s  section. 

e'p-$ > I ,  ( x )  

Here, for a cavity with circular  c ros s  section 

1 d S  Above we replaced integral I, ( x )  by kinetic energy To = - 

within a flow tube. 
boundary, corresponding to radial expansion, by 'po. The perturbed motion 
and deformation of the cavity contour generate almost plane potential flow, 
for which the velocity potential, symmetric relative to the x q  plane, can 
be represented by the s e r i e s  'p, = A,r"cosn@. 

Now we denote the velocity potential at the cavity 

We thus express  the velocity potential of perturbed flow a s  

'p = 'po + 'pl + 'p2 + ... + 'p, . 
generates the normal velocity u1 = -$ = - +cosB. If A, = - R V , ,  then potential 

cp,corresponding to  a simple doublet w i l l  satisfy the kinematic boundary 
conditions for motion of the cavity without deformation of i t s  c i rcular  
c ros s  section, with center velocity V u .  Integral ( 5 . 2 5 )  for 'p, is equal to 
the momentum 

The potential 'p, - A,r-'cosO at cavity surface I = R 
av A 

zn 

B, = - p 'pld (Re) cos 0 = paRZV, 
0 

and is zero for all 'p,,, with the exception of cp1. 

unit length of cavity is determined entirely by the motion of the c r o s s  section 
with a r e a  S = x R a  as  a nondeformed circle.  
estimated r i s e  and downwash of the cavity examined in Sections 11 and 12  
is valid irrespective of the deformation of the cavity c r o s s  section. 

Denoting the radial ra tes  of deformation of the cylinder by &,is, ... , gn, we 

find that constants A,, A,, ... .4, satisfy the equation A, = -I Rn+'& provided the 

deformations E , . & ,  ... ,E,, a r e  zero. 

Hence the momentum E, of 

This result  shows that the 

The kinetic energy corresponding t o  each harmonic is given by 
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For the first harmonic 

We now consider in more  detail the case when the cavity axis is subject 
t o  downwash due to  the onset of lift. Momentum B, - QnRZV,along the cavity 
remains constant but, due t o  change in cavity radius R ,  the velocity 

V, and kinetic energy of the fluid TI =E, $ = 2v2 wz vary. The approxi- 

mate energy equation for a cavity subject t o  downwash bylift has, by analogy with 
equation (5 . l o ) ,  the form 

V 

&ZR2 

(5.26) 

The average radius R satisfies the condition nRP = S,(t ) ,  where the cavity 
c r o s s  section is not necessarily a circle.  
an inclined disk a r e  given by the formulas of Section 1; here the circular c r o s s  
section of the cavity is deformed. 
not equal at the maximum c ross  section of the cavity ( h e r e  it is postulated 
that T ,  = 0). Hence formula (5.9), relating the drag  of a disk placed per- 
pendicularity t o  the flow t o  the maximum cross-sectional a r ea  of the cavity 
nR: = S, , is now invalid. 

( f  = 0 )  the entire lateral-motion energy 

A s  the cavity c r o s s  section moves away from the disk, the energy is r e -  
distributed, the value of TI decreases ,  while the values of higher-order 
t e r m s  increase,  but in such a manner that the sum T ,  + T ,  + _.. remains 
constant and equal to  TI (t = 0) along the entire cavity. 

Forces  W,and W, for flow past 

The sum of perturbing energies ET, is 

We assume that when the cavity streamlines separate f rom the disk - 
T,  is given by the t e r m  T , ( t  = 0). 

“-1 

Then, for any t > 0, 

The drag and l i f t  coefficients for an inclined disk w i l l  be c, = cxu ( I  + u) cos’% 
and cy = cro(l  +a)cosdsin6, where cro= 0.82. Treating the inclined disk as an 

airfoil,  we note that its aspect ratio is h = s- = 

coefficient is c X I =  = 7’. Substituting these relationships into equation 

(5.26). on the assumption that k = 1 -A has the value given in  Section 4, 

the maximum cavity cross-sectional a r e a  S, and the average cavity radius 
R, a r e  found. 

e 4  and the induced drag 
6.’ n 

~ R : A P  

For  T o  = 0 we obtain 

(5.27) 
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sib) 
Table 11 lists the rat ios  $, of the maximum cavity c ros s  sections and 

W? )I the drag ratios - as a function of the disk inclination angle b .  
wo 

S'6' 

SF'  
- 

TABLE 11, 

1 0.993 0.96 0.92 0.86 0.71 

1 
!e 
m, 1.0 0.97 0.93 0.88 0.75 

If the respective diameters of the maximum cavity c ros s  section in the 
plane of angle 6 and in the perpendicular plane a r e  2 R ,  and 2R,,  then noting 
that (by definition) R: = R,R, and also (from Tseit l in 's  experiments) 

!!! =cos6 in the leading part of the cavity, we have approximately 
Ra 

The contour ofthe cavity for 6 #= 0 can be constructed from the contour 
at 6 = 0.  

and R , = R c o s T ~  and R,= R c o s T 6 .  
This method yields the maximum deformation. It is, however, possible 
that the t rue deformation for small  u wil l  be smaller .  

If the contour radius forpoint xfor 6- 0 is R = R ( x ) ,  then Rav= Rcosh, 
3 1 

The construction is shown in Figure 6 2 .  

FIGURE 62. 

Since R in the expression for By should equal R2, the actual downwash velocity 
V, of the cavity axis relative to  that calculated from formula (5.23) is a s  
cos6 to  unity. 

governing the motion of a perturbed cavity. 
perturbed motion is much more  complicated and has been insufficiently 
studied. 

In the present section we presented only the most general relationships 
Actually, however, the 
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14. 
motion of a cavity 

Equation of motion for  the perturbed 

The study of the perturbed motion of a cavity can be extended somewhat 
by using the hypothesis of constancy of pressure at the boundary. We shall 
again consider the absolute motion of an almost cylindrical element of 
cavity length with all the perturbed motions of l s t ,  2nd, 3 r d , .  . . ,n th  order  
t reated a s  plane, while the overall expansion is assumed to  be the same a s  
for  an undisturbed axisymmetric cavity. 

potentials cpl, q2. ... , cp" a r e  specified in a moving coordinate system, the origin 
of which moves with velocity V ,  = h along the y axis, the contour of the 
perturbed cavity in polar coordinates r,B can be represented in the form 

Assuming that the potentials 'DO of expansionvelocities and all  the perturbation 

r=R+~,cos28+~,cos38 +...+ Encosnf3=R+E. 
. .  

Quantities E,, E, ,  ... .E,, and velocities 6. E3,  ... ,E,, can be regarded a s  being very 
small  compared with R and h. 

Defining the s ta t ic  pressure  p,, for the initial (h  = 0) center of the cavity 
and treating pressure  p a  a s  constant, we obtain an expression for the 
Cauchy- Lagrange integral: 

Derivative 2 should be calculated for stationary points in space 
with which the boundary coincides at the given time, since potentials 

cp = -  ' n  

traveling with velocity i, = d along the y axis. 
c i rc le ,  when €,, = 0, we have for n > 2 

1. cosne 
a r e  assumed to  be specified in a moving coordinate system 

flP 
Hence for the undistorted 

At the cylinder surface r = R the radial velocity is u, =&caSntI and the 
t ransverse  velocity is U,  = in sin ne; the other velocities a r e  u1 = Acme and 

= h sin e .  Projecting these velocity components on the y axis gives 

k 2 L =  ck + 0, + u2 + . . . + u n ) u l  -(U, + u 2 + .  . . + U J U , .  'Y 1r-R 

In addition 
. .  

up. - u p ,  = h ~ "  [cos e cos ne - sin e sin ne1 6 Aj,cos (n + I )  e. 

These expressions yield 

"==I 

In order  to  make allowance for deformation of 
it should be remembered that 

the cylindrical surface, 

R ( g , ~ m 2 e + & ~ a ~ 3 e + - . . . ) .  
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The square of the velocity is given by 

(grad 'P)' = (k ,  + uI + u2 + . . . + u,)* + (uI + u2 + . . . + uJ*. 

Collecting the t e r m s  and applying simple trigonometric formulas, we 

(grad q)'= + f? + + 
find that 

1 n-l m - 4  

Substituting all  the above expressions into the Cauchy- Lagrange 
integral and collecting t e r m s  with multiple angles, we have to  within 
f i rs t  - order  infinitesimal s 

Each expression in b races  should be equal to  zero.  
t e r m  defines symmetric expansion of the cavity in the absence of dis- 
turbances. If we disregard the small  quantity h& + . . ., the first t e r m  
wil l  exactly conform to resul ts  obtained in Sections 11 and 12. 

Obviously, the first 

In a heavy 

fluid h = p d t ,  a s  was pointed out in Section 11. If the fluid is weightless 
RY n 

I (,co;ze +(, COSJB 

FIGURE 63. 

( g  = 0) ,  quantity Rah remains constant and 
this case corresponds to skewing of the 
cavity due to lift (Section 12). In general, as  
long as the perturbations a r e  small, we 
have l inear superposition of perturbations 
of various orders .  The perturbation of 
o rde r  h is in principle excited by per-  
turbations due to products of h and per-  
turbations of orders  n - 1 and n + 1. 

Experiments show that the three-  
dimensional cavity is sensitive to various 
disturbances, which markedly deform 
its c ross  sections, particularly in the 
trailing part .  The above analysis of 
perturbed motion i l lustrates only the 
main aspects of the method and is ap- 
parently suitable for estimating the first 

few harmonics. 
amplitudes is shown in Figure 63. 

An example of the addition of two harmonics of equal 
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15. Effect of the free  surface and walls 

The effect of the free  surface,  bottom and walls of the water tunnel on 
the cavity dimensions is quite appreciable; however, in the majority of 
ca ses  it has not been determined exactly. 
motion a s  an ensemble of stationary sources  of variable strength, it can be 
concluded that each cavity c r o s s  section is "attracted" to the free  surface 
during expansion and "repelled" from it  during compression, i. e., in the 
trailing part .  When moving near a solid surface this picture is reversed, 
i. e. ,  the cavity is attracted to the surface during compression. 
during horizontal motion in a shallow tank the trailing part of the cavity 
may be strongly attracted to  the body. 
from elementary considerations, by taking the boundary condition at the 

free  surface a s  $' = 0 and a s  2 = 0 at the wall; this is equivalent to  placing 

above the free  surface image sources  of opposite s ign and sources  of the 
same sign behind the wall. 

section So can be treated by means of the momentum theorem in the same 
manner a s  in Section 3 .  

Treating the cavity in i ts  absolute 

Obviously, 

The above conclusions are obtained 

The axisymmetric flow past a mouthpiece in a circular tunnel with c r o s s  

The expressions for the maximum cavity c r o s s  s S O  

section W, = S , ( p o - p b )  - !.!&a and VSb = vLdS a r e  valid a lso in this case.  

However, the continuity equation yields inequality V$ <(So - Sb)Vb ,  since 
2 

sk S I  

between the cavity boundary and the tunnel wall the velocity decreases  
from V ,  at the f r e e  boundary t o  some lower value at the tunnel wall. 

S I 
Since V ,  = V o w ,  we should have 2 < I -- If it is desired,  

SO m a  . 
for example, t o  attain a cavitation number u = 0 . 1  in the tunnel, then it is 

necessary that 

exceed approximately 0.22 of the tunnel diameter.  
claimed that the effect of the walls on the cavity dimensions and shape is 
insignificant. 

S be greater  than 20 and the cavity diameter should not 
' b  

Even then i t  cannot be 

16. 
the loss of gas from a cavity 

Different stages of developed cavitation and 

Developed cavitation can be (although somewhat arbitrarily) subdivided 
into th ree  characterist ic phases, depending on the predominance of a given 
factor. 
developed cavity forms at  the lower velocity l imit .  
t e rmed "gravity" cavitation. 
a r i s e s  at very high velocities, when the effect of weight is unimportant. 
This "velocity" cavitation is close to  developed cavitation in a weightless 
fluid. 
phases. 

Figure 64, where l ines I - I of the minimum cavitation number 

gDk and lines l l l - l l /  of vaporous cavitation a, = - 2'o-p3 . Olnl" - - v,: 

The first phase is dominated by the fluid's weight, when a 
This phase can be 

The third phase, close t o  vaporous cavitation 

The second, transition phase, is midway between the f i r s t  and third 

A graphic insight into the three cavitation stages can be obtained from 

Obviously 
UV:, 
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the value of D obtained with any gas-injection ratio 

l imits.  The three basic parameters ,  Froude number Fr = injection 

ratio a = 0 and cavitation number u = -, a r e  found to be insufficient 

for descirbing the cavitating flow. 
ing to  (5.20) is related to  the Froude number by the expression u i i n F r 4 =  const.  
Consequently, the lower l imit  of cavitating flow depends on the l inear 
dimensions of the body, for example, on the disk diameter d,. 
limit, i. e., vaporous cavitation, does not depend on d,, but on the 
pressure difference P,-Pp, . 
at 2O"C, amounts to only 0.0174 dyne/cm2 and is therefore insignificant at  
P,,= 1 atm. Hence the vaporous cavitation number a, is an additional and 
important parameter of cavitating flow. 

cannot l ie outside these 

m' 
2 (Po  - P,) 

Vda ev2 
The minimum cavitation number accord- 

The upper 

The value of p , ,  the water-vapor pressure  

2.5 5.0 75 (m/sec 

FIGURE 64. 

A s  the difference p o - p ,  decreases  the vaporous cavitation l imit  
approaches the limit of the minimum cavitation number. Since for given 

Po-pv we have oy  = F, while for given d,  w e  have a,,,=-.&, there  always 

exists a point of intersection between the limits ov and om,,,. For  example, 
i f  p o - p ,  =0.1 dyne/cm2 and d , =  100 mm,  this wi l l  occur for a velocity 
of about 90 m / s e c  at 0=0.002. Apparently the cavitation number cannot 
he reduced further,  since this point of intersection corresponds to the 
attainment of p re s su re  0, at the upper point of intersection corresponds to the 
cavity. It was assumed inthe above discussionthat the fluid cannot sustain 
absolute p re s su res  below p ,  and that the flow is horizontal. 

viscosity of the fluid and gas have virtually no effect on the drag of bodies 
such a s  a disk and on the formation of f r e e  boundaries of the cavity. 

1 

The Reynolds number and, in general, the effects associated with the 
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However, the formation of gas-liquid mixtures in  the rear  part of the cavity 
and entrainment of gas there  can be highly affected by the viscosity, i. e. ,  
the Reynolds number and capillary properties of the liquid. 

small  bubbles, it is natural to expect (due to  the high specific heat of the 
water) that the entrainment wi l l  not depend on the temperature of the gas 
entering the cavity. 
is affected markedly by the volumetric velocity (flow rate) Q , referred to  
the wake p res su re  p o  and the absolute water temperature fi,,. The kinetics 
of these processes in the wake will be of importance for soluble o r  con- 
densing gases.  Since this problem has not been studied, we shall consider 
below only the lo s s  of insoluble and noncondensing gases. 

to  assume that the removal of gas from the cavity is unaffected by the flow 
pattern at the disk, but rather by the principal dimensions of the cavity. 
Defining the cavity by i ts  maximum diameter and eliminating the body dia- 
meter  d ,  and also assuming that the gas  flow does not affect the shape of 
the cavity boundaries, it is natural to  seek the gas-loss law in the form 

Since the entrained gas is ejected into the cavity wake in the form of 

It can be assumed that the loss  of gas from the cavity 

Since highly elongated cavities a r e  usually obtained at  low u, it is natural 

filaments to  the second form of loss by periodically ejected portions was 
noted by Krylov 1 8 1 ,  who put forward certain theoretical considerations 
pertaining to  the frequency of ejection of these portions. 

carr ied out by this author in 1948- 1950 at - - 3 0  and velocities up to 

Water-tunnel experiments for determining gas loss from cavities were 
H 

4 

(5.28) 
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5 

Figure 65 is a plot (in coordinates 2- and Q = L  a z Q )  of the experi- 
urn " 0 4  v ,q  

mental points obtained from studies of gas loss by vortices 1 8 ,  2 6 1 .  
curve w a s  calculated f rom the expression 

The 

a 3  -- ( 5 . 2 9 )  

The points a r e  very scattered. This empirical formula reflects the 
fact that increasing the injection ratio reduces the values of a only to  a 

certain limit, close to  +- 1 . 5 .  

Reduction of th? injection ratio to 
a value below Q = 0.02 usually resul ts  
in the disappearance of the cavity. 

Developing the Cox- Clayden 
theory, assuming that the vortex 
tube which forms "entrains" gas  

from the cavity so that Q- 2$u?v,, 
using the expression PO-pA - Q g h  = - erY 

for the pressure at the boundaries 

m 

6 
o - 6.8 20.0 d, 

2.00 

1.75 

(50 2na! 

1.25 of a hollow vortex, and finally sub- 
0 0.25 0.50 stituting the expression for r from 

vd Section 10, Epshtein determined the 
gas  flow rate  from the expression FIGURE 65. 

0 0 . 2 7  a[ux Fr4-2] ' ( 5 . 3 0 )  

Formulas ( 5 . 2  9) and ( 5 . 3 0 )  have fully identical str.uctures. 
a;Fr4= 0.96, formula ( 5 . 2 9 )  yields 

Setting 

- 0,162 ( 5 . 3 1 )  = a [u*Fr4 - 3.21 ' 

Formulas ( 5 . 3 0 )  and (5 .31 )  a r e  qualitative expressions of the relation- 
ships governing gas losses  by hollow vortices in the gravity cavitation 
stage.  However, there  a r e  usually substantial differences between the 
calculated and observed values of G. The causes for  these differences 
should be sought in the inaccuracy of calculations a s  well a s  in the fact 
that some factors were disregarded in the processing of the experimental 

data (for example, &, Re, etc.) .  

expression P o - P P 1 - Q g h =  Qr as  V o + m  gives ~ 3 0 . 0 2 5 $ .  Qo 

that this loss occurs in addition t o  lo s ses  due to  other causes.  

unimportant provided u/omln >> 1. 
the value of Q should increase with increasing o ,  lo even for Vg,= const. 

When the vortices form due t o  lift,  r z p c y d V , .  Substitution into the 

It is possible V 4  

F o r  velocity cavitation near the curve of ov the weight effect is 
At o = av the gas  flow rate  is Q = 0; 

The following relationship is to  the first approximation: 

Q - kVo$ (% - 1) .  ( 5 . 3 2 )  
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Estimates show that the "gas injection constant" k 2 0.008- 0.01. 
It should be remembered that the relationships governing the lo s s  

of gas from cavities a r e  approximate and thus provide only estimates.  
The rate  of gas  loss depends to  such an extent on the specific features of 
the flow pattern in the cavity sealing zone that it is impossible to  suggest 
a universal method for the theoretical determination of gas loss. 

The above considerations and conclusions suffice only for  gaining some 
approximate understanding of flows with developed cavitation. 
t ime various methods for  obtaining theoretical estimates of cavitation 
effects have been worked out. 
a logical correlation of theoretical estimates and experimental data; 
however, this was not always found t o  be possible. 

The method of gaseous cavitation allows experiments t o  be conducted 
at a relatively low velocity and large cavities t o  be obtained. 
amount of experimental data has been accumulated in this region of gravity 
cavitation. However, these data should not be overestimated, Since the 
conditions of cavity formation vary markedly with increasing velocity and 
the decreasing role of weight. 
a cavity is only in the nature of a general survey. 

At the same 

The main attention was paid t o  providing 

A large 

Section 16 concerning gas lo s s  f rom 
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Chapter S i x  

METHOD OF PLANE SECTIONS AND ITS APPLICATION 
FOR CALCULATING HYDRODYNAMIC FORCES 

The method of plane sections,  by its nature,  is some approximation of the 
physical picture, the degree of approximation being the higher, the m o r e  the 
body is elongated, However, this method is attractive by i t s  simplicity and 
generality, while in the majority of cases  exact calculation of hydrodynamic 
forces  is so complicated that i t  cannot be implemented and most likely cannot 
justify the corresponding volume of work. 

finite-span wings and of wings with low aspect ratio.  This method is used for  
calculating forces  during planing of profiles and motion of ships. The 
principal resul ts  of the theory of three-dimensional cavitation were  a l so  
obtained in conjunction with the method of plane sections. Other examples 
of successful  application of this method could also be  cited. However, 
res t r ic t ing ourselves to  the above we note that practical  utilization of this  
method involves a number of fine points, which should be considered in 
deriving design equations. Although this is t o  the detriment of formal  
generality, we shall  consider the two- dimensional motion of s lender  bodies 
of revolution within a fluid in continuous flow, par t ia l  cavitation and s t ream- 
line separation, as well as the simplest cases of planing. 

The idea of applying the method of plane sections t o  the calculation of the  
lift for planing profiles is due to  Pavlenko (1932). At this  time the theory of 
water entry [immersion] of profiles was still unknown, and the impact induced 
m a s s  was used for calculating forces  and moments. Hence agreement  with 
experimental resul ts  was obtained only in some limiting cases  (small  B ,  
part ia l  width). This  c i rcumstance resulted in scept ic ism concerning the 
method of plane sections as a whole. Later, in 1957 - 1958, Tikhonov, 
Sokolov, Kolosov, and the present  author a l so  used the method of plane 
sections for  calculating lift during planing, but employed the Wagnerian 
expression of lift for  the uniform immersion of a wedge as the "cornerstone." 
Agreement with experimental resul ts  was satisfactory only at smal l  angles 
of attack. At the same t ime work was car r ied  out for  refining the method of 
plane sections, resulting in the displacement theory presented here.  

method of plane sections.  The f i r s t  of these consis ts  in calculating the 
induced masses  by plane sections,  whereupon the inertial  hydrodynamic 
forces  are calculated f rom the known rule  /7/ in the same manner as for  an  
ideal fluid, i .  e., forces  due to  the properties of the real fluid are in some  
way added t o  these forces.  The second approach is based on the concept of 
the "pierced layer", when the pressure  is determined on an elementary 
"layer" through which the body passes;  the total effect is obtained by integration. 

In hydrodynamics the method of plane sections underlies the theory of 

Two approaches are  presented in the l i terature  t o  the application of the  
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The theory of planing of profiles and of three-dimensional cavitation 
which was lately developed /14/, as well a s  the known linear theory of small 
aspect ra t io  wings a r e  actually based on the concept of the pierced layer; 
this makes it possible to  construct a physical pattern of the motion of bodies 
in a r e a l  fluid which is close to  reality. Hence preference is given he re  t o  
the concept of the pierced layer.  Approaches to a given problem from 
different points of view a r e  useful, since it makes it possible to  determine 
details in the mechanism of the phenomenon: this method is used here.  

1. Basic conditions and principles 

F i r s t ,  for simplicity we shall  consider the two-dimensional motion of a 
slender body of revolution in an infinite fluid. The coordinate system x .  y. t 
associated with the body (Figure 6 6 )  is arranged s o  that the x axis coincides 
with the axis of symmetry of the body, while the motion occurs  in the x y  
plane: unit vectors along the moving axes a r e  denoted by i, j, k. The velocity 
vector of the origin is therefore 3 = iV, + jv, and the angular velocity vector is 

The more  complicated cases  (partial  cavitation, planing, rebound, etc.) 
will be considered from the s a m e  points of view. Calculations under other, 
m o r e  complex conditions of motion can be carr ied out without much difficulty. 

- 
= ko,. 

FIGURE 66. L 

It is known from the theory of motion of a body i n  an ideal incompressible 
fluid that the hydrodynamic problem of finding the velocity potential Q can be 
solved uniquely provided the velocity of a l l  the points on the body surface S ( 7 )  
is specified and it is stated that the motion of the fluid is due only to  the 
body. Hence the fluid at  infinite distance from the body is at rest (grad 'p --f 0 
as I = 1/ x* + y 4  +r*+ GO). It follows f r o m  substitution and solution of the 
problem that stopping the body resul ts  in instantaneously stopping the fluid 
motion. The Laplace equation A'p = 0 governing the motion of the fluid shows 
that the velocity of a fluid particle at  point 7 = Lr + jy + kz is uniquely defined 
by the boundary conditions at the body surface S (T) ,  which for a given shape 
of body are defined uniquely by velocity 
velocity a. Hence the fluid surrounding the body can be t reated as a system 
of mater ia l  points related by ideal (internal energy equal t o  zero)  holonomic 
constraints t o  the body possessing six degrees of freedom(V,, V,, V,. I,,, ,my  0, ), 
i. e., respectively s ix  generalized coordinates in Lagrange equations of the 

of the coordinate origin and angular 
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second kind which, apparently, a r e  applicable t o  this ca se  /lo/. However, 
all this is valid rigorously only a s  long as the fluid is ideal and 
incompressible. 

and momentum, and then the entire motion of the fluid can no longer be 
stopped by instantaneously stopping the body. Consequently the particle 
constraints a r e  not holonomic. Although the fluid in the vicinity of the body 
outside the wake can still betreatedaspotential ,  it remains unclear t o  what 
extent the wake modifies the flow and to  what degree the Lagrange equations 
are applicable. 

In discussing the method of plane sections one must s ta te  specifically 
what this t e r m  means. W e  shall  now imagine a plane section as a physical 
layer,  isolated from the fluid by two neighboring planes perpendicular t o  
the longitudinal axis of the body. Such a concept would not be very useful, 
since the flow within this layer is two-dimensional and the widening of a 
hole pierced by the body i n  this layer  would require  infinite energy. 
this layer  will be thought of as a fluid annulus, embracing the body in a 
t r ansve r se  plane and bounded withinthe fluid by a s t ream surface supported by 
the edges of the annulus. 
annulus has a velocity potential and normal velocities induced by the body 
motion. 

If we consider,  for example, the t r ansve r se  motionof a body of revolution, 
then the potential at the boundaries of the annulus, in the hole within the 
layer,  i s  assumed to be the s a m e  as that of a moving s imilar  element of 
length belonging, however, to a cylinder: the s t ream surfaces  he re  are 
close to  the previously mentioned planes. As  the body moves longitudinally, 
the s t ream surfaces  sliding off the ends of an annular element of the layer 
will intersect the plane of the maximum section of the body, 
out a volume formed by the rotation of two close s t reamlines  relative to the 
longitudinal axis of the body. 

t r ansve r se  flows, also by doublets located on the axis of the body and in  i t s  
wake, is known /7/. It is easy to  show that the potential of t r ansve r se  flow 
for a slender body is close to the potential of a cylinder. The kinetic energy 
of t r ansve r se  flow in a unit annulus, determined by the boundary values of cp 

and 2, changes instantaneously with variation in the velocity of the 
annulus center.  It can hence be assumed that the relationships between 
particles within the annulus a r e  holonomic, and that the Lagrange equation 
of the second kind is sti l l  applicable to it, while their  application to  a body 
as a whole with i t s  wake is doubtful. These considerations a r e  valid if 
t he re  is no separation within the annulus: in the case  of separation an energy 
and momentum flux t o  the wake flow is produced within the annulus proper .  

flow past a part  of the body with cavitation, planing and rebound all the 
above remains valid, but in each specific case the flow must be divided into 
two parts:  one subject t o  holonomic constraints and the other determined by 
the momentum and energy fluxes in the body wake. 

A body moving in a r e a l  fluid leaves behind it a wake containing energy 

Hence 

It is assumed that the inner surface of the fluid 

singling 

The representation of flow past  bodies by sources  and sinks and, for 

If the body is different f rom a body of revolution, then for the case of 
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2. Approximate calculation of induced masses. 
Motion in an ideal fluid 

+ noz)cosO =uycose.  whereuy = V u +  mz= j fe(x)  (v,isthetransport [ referenceframe] 
velocity of points on the x axis of symmetry of the body). It is assumed in 
using the method of plane sections that the velocity potential a t  the surface 
of a quasicylindrical element R = R (x) of the body is cp = VYq1 + o,cp6 = (Vy + o,x) cp;, 
where cp;= - RcosB, i. e., the potential is the s a m e  as for an infinite cylinder 
of radius R ,  moving with velocity uy perpendicular to i t s  axis; the specific 

induced m a s s  is - -Q  Bd (Re) = QnRx (x ) .  I 
I 
I 

We recal l  the principal postulates of the theory of motion of a body in an 
ideal fluid; the induced masses  will be calculated by the method of plane 
sections. As is known, the velocity potential of a flow generated by the 
motion of a body in the xy plane within an unbounded fluid, at  r e s t  at infinity, 

is cp E V,cp, +- V,cp, + o,rp6 ; the normal velocity is 3 v dp, + v . 2  + ozg. The 

kinetic energy of the fluid is 
dn dn 

Using Green 's  theorem it can be shown that the induced masses are  
determined from the expressions 
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The induced masses  for  a body with volume 0, and with end abscissas  x1 
and g2 are 

cpl = cp;; .$ = COS 8; 

On the assumptions made A,, 0 and h,, = 0. It is c lear  that i f  we do not 
consider the motion of a body of revolution, but of some other body, the 
t ransverse  members  of which are  symmetr ic  relative to the xy plane and 
the specific induced m a s s  of the t ransverse  member is m i ( % ) ,  then ( 6 . 2 )  will 
a l so  be  valid, but then tpR ' (x )  in them should be replaced by mi@).  

by the body on the fluid are calculated by the known method using Lagrange 

equations of the second kind:zi-.-- - - Qf .  In fact, expressing the kinetic 

energy as T - hz9-+ + h,Vuol + oz, we find 

the momentum 

After the induced masses  a r e  calculated, the momenta and forces  exerted 

d dT dT 

4, 
VZ wz 

and assuming that 4, = VI, and i, 

and the angular momentum 

As  is known, the force vector F a n d  the moment vector A exerted by the 
body on the fluid a r e  calculated f rom the expressions 

( 6 . 3 )  

a 

without rotation of axes,  i. e., assuming unit vectors  i, j and k t o  be constant. 
In our case P = iVz + jVy and 0 = ko,. Elementary computations yield 

Symbol here  has the meaning of differentiation of vectors and 
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If the solid slender body proper has distributed masses  rn ’ (x )  along its 

length, then, designating the m a s s  of the body by in=  j m ’ ( x ) d x ,  the centri- 

fuga1 moment of inertia by 

t o  the 2 

L 

= xm’ W d x  and the moment of inertia relative 5 
L 

axis  by a m -  ?m’ (x )dx ,  the kinetic energy of the body proper is 

When the origin is placed a t  the center of gravity of the body, aa8= 0. The 
Lagrange equations yield expressions for the momentum and angular 
momentum applied t o  the body: 

The equations of motion of a body in an ideal fluid due to  an external 
force Cxt and moment mextare 

If the fluid is ideal, incompressible and continuous, and the body is solid, 
the entire inexactness of this theory consists only in the inaccuracy of 
calculating induced masses  by the method of plane sections. F o r  a slender 
body this can usually be tolerated. In o rde r  for equations (6.6) t o  be valid, 
Fext and &&must be external relative t o  the body-fluid system. 

a r e a l  fluid, the conditions underlying the preceding conclusions are (as 
previously pointed out) not satisfied, and hence these conclusions are for the 
most pa r t  invalid. In a r e a l  fluid, as a resul t  of its viscosity and the 
resulting boundary layer,  as well a s  in cases of discontinuities (when such 
occur), the body leaves behind it a wake, containing a certain momentum 
and energy, which can no longer be changed by instantaneously changing the 
body velocity. The presence of boundary layer  separation and of a wake 
make i t  impossible to  satisfy conditions under which Lagrange equations of 
the second kind can be applied to  an ideal and incompressible fluid. Hence 
actually, hydrodynamic forces should not be calculated in the manner 
indicated above; their  values may differ f rom those given by equations (6.4). 
It may appear that, in o rde r  t o  make allowance for properties inherent only 
to  real fluids, it is sufficient t o  supplement equations (6.6) by viscosity 
force terms, leaving unchanged all the forces  corresponding to  the iner t ia  
effect of an  ideal fluid. However, this is not the case. Below we shal l  
consider the principal aspects of the problem of the motion of a body in a 
real fluid. 

In all cases  of practical  importance pertaining to the motion of a body in 

I 
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3. The concept of the pierced l aye r  

It would appear at first sight that one can avoid using the above Lagrange 
equations for calculating forces  by first calculating the forces acting at the 
boundary of the hole in the fluid layer pierced by the body and thenintegrating 
t o  find the total  forces.  We shal l  consider this problem in m o r e  detail and 
again in reference to a slender body of revolution s t i l l  treating the fluid as 
ideal. 

uv = u,(t) is obtained from the Cauchy-Lagrange equation 
The pressure  distribution a t  the surface of a cylinder moving with velocity 

g+; + P = F ( t ) .  
Q 

The velocity potential at  the surface of a quasicylindrical hole in the 
layer pierced by the body can be represented a s  the s u m  of two potentials: 

q=@,  +On. The boundary conditions at  the surface of a slender body are 

2 5 = 8 + &2 and 2 = 3 - EA. We thus assume that potential 0, 

corresponds to expansion of hole R = R( t ) ,  while potential @I is determined 
by the motion of the hole in  the plane of the annulus formed by penetratingthe 

layer.  Accordingto Section2, it is assumedthat 0 , ~ -  Y, where r is the 

distance from the x axis.  Derivative 2 in the Cauchy-Lagrange equation is 

taken a s  a stationary point in  the space, while the potential is specified i n  
the moving coordinate system. Hence 

as R ~ Q  - as 

v Rs cos 0 

where 

The square of the absolute velocity a t  the cylinder surface in the Cauchy- 
Lagrange equation is 

op = (k + uy C o , e ) p  + sin ey = + 0; + zv,dcose. 

The t ime function F ( t )  is determined from the s a m e  considerations, i. e., 
the disturbed motion of the fluid a t  infinity f rom the body disappears, i. e., 

2 and vatend to  ze ro  as r=I /w'+g +z '+oD.  Hence, a s  r + W ,  p-cp,,; 

consequently F ( t )  =e. Substitution of these resul ts  into the Cauchy- Lagrange 
equation yields e 

According to  the postulates of Section 2, Ol = VXq, and 2 ~3 a R i V x = & .  
dr 

Evidently when V, = const, 2- 2.: = - V ,  m 2. 
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In considering the stationary layer pierced by the body we neglect the 

absolute velocity of t rave l  of the layer proper, while in Section 2 we 

neglected the longitutinal induced mass  kl,. Both these assumptions a r e  
equivalent and standard in the theory of slender bodies, In addition, the 
p re s su re  defined by the expression in braces  does not depend on angle P and 
does not have a component along the y axis. Hence i n  calculating forces  
acting on a slender body of revolution we shal l  take into account only that 
par t  of the p re s su re  which is due to  motion along the y axis .  Thus, the 
pressure  difference which generates the la teral  forces can be  expressed a s  

a@l 

(6.7) 

We shall be concerned with two excess pressure  integrals. The f i r s t  
defines the pressure  force of the cylinder on the fluid: 

dF, = dx (p - pO)cos Od (Re) = $ (QnRZv,) dx, i 

r 
and the second the "circular pressure"  on the fluid: 

Po2 dQ= dx  @ - p P o ) d ( R O ) - - & R ~ Y .  

For a slender body $ c Iy is a small  quantity; hence dF, = - R d Q  = 
ev2 

= 2nR Tu dR.  Obviously, dM, - xdF, . When the body pierces the stationary layer 

& ,  where z T ' - v x .  Therefore z=z-z 
dr 

In integrating dF, and dM, along the longitudinal axis of the body we will 
encounter integrals of the form 

Integrating the elementary forces and moments along the body axis f rom 
x = x, t o  x = x z ,  we find the projections of forces  on the body axes x and y ,  
as well a s  the projections of the moment vector on the z axis. 

moment: 
Equations (6.8)  yield the following expressions for the forces  and the 
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For a slender body with sharp  ends, when there  is no separation of fluid 
from the body surface and derivative R' is very  small along the entire body, 
all the expressions in brackets  in (6.8) and (6.9) vanish, since R ( x , )  = R ( x 3  = O .  
Here h' = 0, h&h,,, & = La, and formulas (6.9) reduce t o  (6.4). We note that 
the result  as such is quite natural, s ince instead of calculating the p re s su re  
one can use the expression for the kinetic energy for  the pierced layer,  

T' = enR2+, and then calculate f rom the Lagrange equation the quantity 02 

It is c lear  that the resul t  is the same  i r respect ive of the sequence of 
ope ra t  ions. 

and the method using the concept of the pierced layer (Section 3 )  for an ideal 
fluid and continuous flow past bodies yield the s a m e  final resul ts .  

Hence, both the method of initial computation of induced masses  (Section 2) 

4. Flow with s t reamline separation 

Suppose a slender body has apointed nose, sothat  R (x,)= 0, and i s  truncated 
by a perpendicular plane a t  x = x,, where R(xJ  = R,. When such a body moves in  
a real fluid, flow past  the sharp  corner  at R ,  is replaced by separation of 
free s t reamlines  which, together with the fluid left behind by the body, form 
a wake; in some cases a cavity may form behind the body. In such a flow the 
t e rms  in brackets in formulas (6.9) will no longer vanish but be equal t o  
their  value at x, .  Denoting by h; = QnR: the specific induced m a s s  at x = x1 in 
the plane of s t reamline separation, and the projection of the t ransport  
velocity of point 1, on the y axis, as above, by uy, = V ,  + 
t e r m s  expressing forces  in expressions (6.9) gives 

collection of 

(6.10) 

Expressions for F,. F ,  and M, in (6.10) are determined from (6.4) in the 
same  manner as for  an ideal fluid and continuous flow past the body. Velocity 
V, + .w, = uyl is the velocity of the separation point Y, in the !I direction, for 
which reason hp,, = Bi I  is the specific momentum in the plane of separation 
while V,B; is the momentum flux shed from the rear end of the body. 
Equations (6.10) show that force  F,, and moment M,, of the body pressure  on 
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the  fluid a r e  composed of t ime derivatives of the momentum and the angular 
momentum associated with the body and calculated in  the same manner as for 
the flow of an ideal fluid past the body from formula (6.4) and from fluxes 
of momenta and angular momenta shed from the body. 

FIGURE 67. 

2 
On converting to  a moving coordinate system, the suction force-A;f= 

= - h ; V s ,  together with the projection of force - h;VJvy, in the direction of the 

velocity, yields the induced drag h;V2az-hh;+, equal to the specific energy of 

the t ransverse  motion of the wake (Figure 67). 
Let a c i rcular  cone with small  central angle 2~ move in  such 

a manner that V =-av,, where a<p. Let velocities V, and Vy be constant 
and let the angurar velocity be zero. The induced masses relative to  the 
origin placed at  the center of cone base R, a r e  

Y 2  

E x a m p  1 e .  

the separation induced mass  i s  hi = n&. 
The forces  and moments exerted by the fluid on the cone are: 
induced drag 

l i f t  

moment 

I43 



As known, the induced mass  of a plate of width 2 4  is also QnR:. Hence 
the preceding expressions apply equally to  a delta wing and express  the 
known linear theory of small-aspect-ratio wings. 

5. Further refinements of the theory 

The introduction of the separation induced mass  h; explains to  a large 
degree the appearance of hydrodynamic forces  when a body moves in a r e a l  
fluid. The pierced-layer concept thus makes it possible to  estimate the 
hydrodynamic forces produced by the presence of viscosity forces in r e a l  
fluids. However, in Section 3 we presented only the simplest  scheme of 
force  computation on the assumption that the layer is stationary at  each 
given t ime and does not deform relative to  the fluid at  res t ,  and that 
viscosity does not induce fluid separation within the pierced layer proper. 

Actually, however, when using the concepts of the pierced layer theory 
consideration must be given to  the longitudinal transport of the layer which, 
for a slender body, occurs  with absolute velocity $= U ,  where the local 

t ransport  velocity is I( = u ( x .  8). The average value of the velocity uav = 

= udem be treated a s  the ra te  of t ransport  of the layer center  along the x 

axis. When this transport is considered the relative velocity of the layer is 

V,,, -z  = - V. + u,,.Obviously, the appearance of the transport velocity 

modifies the magnitude of forces calculated in Section 3. 

revolution in continuous flow. The velocity potential a t  the body surface was 
expressed in Section 2 a s  'p = - ( V ,  + o , x ) R  cos0 + @, . The absolute longitudinal 

velocity of the fluid is 2 = - R' (V, + o,x)  COS 0 - o,Rcos 8 + 2 . Obviously, 
for any values of Vy and o, for a slender body of revolution uav= 0, since 

{cosBdB= 0 ,  and the transport velocity 9 is usually insignificant. It can be 

concluded from this that the mean t ransport  of layers  for the forward par t  of 
a thin, sharp-nosed body of revolution, where there  is no la teral  separation 
of fluid from the body surface, is zero. Fo r  the case  of planing and fully 
cavitated flow past bodies the t ransport  of layers  a t  the la te ra l  surface can 
be quite appreciable. 

layer  and the drag associated with its formation do  not a r i s e  a l l  a t  one time, 
but gradually. Following the fluid par t ic les  belonging to  the layer pierced 
by the sharp-nosed body of revolution it is seen that the particles adjoining 
the body a r e  moved aside by it and the center  of the fuild annulus is 
transported with velocity V,+ xo, = uy. 

In 

da 

Let us now calculate the t ransport  velocity for a slender body of 

pn 

0 

It is known that i f  a body s t a r t s  moving from res t ,  then the boundary 

I 

If the amount of center drift ( u,,df during passage along the body is very 

high compared with the body radius R ,  then an ordinary wake will develop 
behind the body and one may expect the appearance of la te ra l  drag w y ,  close 
to  the drag of a cylinder placed i n  a flow with velocity uy. If, however, the 
body moves with velocity u, small  compared with V , ,  particularly if the 

0 
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t ransport  distance is smaller  than the body radius, which is defined by the 

inequality u < R ( x ) ,  then there  will be almost no separation to  the r e a r  

of c i rc le  R ( x )  and drag wI can be neglected. In general  the la te ra l  drag w i l l  
differ f rom zero  and be proportional t o  euifor each element, but the drag 
coefficient C, will be a complex function of the transport of the center, 
expansion of the radius, and the Reynolds number: this function is unknown. 
Coefficient C c  ranges (depending on the case)  f rom zero to  a maximum and 
then decreases  to  some steady value. The la teral  drag and its moment for 
the ent i re  body a r e  

u ( X  - X )  

vx 

These forces  and moment can be added to  expressions (6.10) of hydrodynamic 
forces. 

momentum 6’ need not necessarily be regarded as the effect of f ree  s t ream- 
lines s e p a r a t h g  from a body with a butt of radius R,. For any body a t  url#O,  

of a vortex system from the body surface (Figure 68). The vortices s t a r t  a t  
different points on the body surface, but behind t h e  body they forin a vortex 

pair with momentum 6; and kinetic energy B i Y  per  unit length. The separa-  

The separation induced mass  ki and its corresponding separation 

I even in the  case  of quite smooth sharp outlines, viscosity causes the shedding 

I tion induced mass  h: can be treated a s  the equivalent of such a vortex system. 

FIGURE 68. 

2 
For  clar i ty  of the analogy between forces  h;V,V, and A; 3 and forces  

acting on a wing, Figure 67 shows transition to  the moving axes X ,  Y. F o r  

sma l l  angles of attack a= -2 at a, = 0, in the xy plane, the forces  exerted 

by the fluid on the body a r e  

V 
v x  

I 
F;=-h;% and F,= l i ,Vs; .  
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the projections of these forces  on the moving axes are 

Y = h;v% + . . . , 
x = h;Vh' - h;VZ "' 2 = h'V2 1 2  - ax 

Force  X, is none other than the induced drag. 

the above forces, t he re  ac t s  along the x axis  a force overcoming the drag 

w,  = C,s. T ,  which is due to  friction and incomplete recovery of pressure,  
the system of forces acting on the fluid takes the form 

With consideration of the above, a s  well a s  of the fact  that, in addition t o  

QVZ 

I "2 
F: = - h -f + F ,  t w,; 

Fu= hiV,~,, + F, + w ~ :  
. .  

M,= h;x,V,v,, +M,+m,. , 
(6.11) 

In these formulas force F;, whose magnitude is equal t o  the drag fo r  
slender bodies of revolution, depends very little on the t r ansve r se  flow, 
determined by velocities V, ar.d 0,. The drag coefficient is usually 
determined from wind-tunnel t e s t s  or is calculated with consideration of 
friction and p res su re  induced drag. 

the las t  two of system (6.11), Ignoring nonlinear t e r m s  and making use  of 
the fact that vu, = VI/ f x p ,  

The expressions needed to  construct equations of motion of the body a r e  

(6.12) 

Force  Tu and moment M: a r e  exerted by the body on the fluid. Usually 
steady hydrodynamic forces  exerted by the fluid on the body are expressed 
in  terms of coefficients cy and rn2 by the formulas 

Y = GusH q; M, = rn$ML 2 ,  P v' 

where S, and L a r e  respectively the characterist ic area and length of the 
body. In the l inear approximation 

C" = 5 a + 3;; 
rn, = m;a + rnj 5. 

The dimensionless angular velocity is 0 - 3. 
The position coefficients Py and m; a r e  determined by wind-tunnel testing 

of recti l inear models. Quantities c l  and mi can be determined experimentally 
by wind-tunnel testing of curvil inear models, the method of oscillations, and 
rate-table tes ts .  

expressions in t e r m s  of coefficients cy and rn,, and noting that for small 
angles of attack a- - 2, we obtain v, 

V 

Equating the steady-state force components f rom (6.12)  t o  their  

V 
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[A, + (A; X J J  = rn; S. L + : [A, + (A; x;), 1 = - m: sM L' 3 . (6.13) 

Formally (according to  the preceding conclusions) the values of the 
separation induced mass  h; and of the separation abscissa x, should be the 
same  in all  the t e r m s  of (6.12). However, comparison with wind-tunnel 
resu l t s  shows that the values of hi and x1 obtained from different formulas of 
system (6.13) vary, for which reason the products of & and x ,  in these 
expressions a r e  subscripted. 

consisting of a cylinder with c ros s  section S ,  and ellipsoids of revolution in 
the forward par t  with major semiaxis L / 2 .  The induced masses  a r e  easily 
calculable relative to  the center L / 2  =xi: 

A s  an illustration consider a slender body of revolution of length L ,  

Formulas (6.13) define the theoretical values of the coefficients: 

2 
3 '  5 p. 2.0. rn: = - 

3 
8 

- - 
$- 1.0; m:- - -. 

Experiments show that the actual values of these coefficients differ 
somewhat f rom the above: however, they a r e  close to  theoretical values. 

It was found by measuring the pressure  distributions that at low angles 
of attack the hypothesis of a pierced layer holds quite satisfactorily a t  the 
leading, widening par t  of a slender body of revolution. Integration of 
pressure  over the contour of the c ros s  section a t  the cylindrical par t  of the 
body does not yield a stable value of the specific pressure force. This 
may be attributed to  separation of flow at  the "leeward" s ide of the cylinder. 

6.  Forces  on a partly wetted body 

At sufficiently high velocities, par t  of the slender body may be wrapped 
in  a cavity (F igure  69). The leading par t  of the cavity has  no clear  boundaries, 
due to  the pulsating, unsteady nature of the flow. It is hence impossible to  
single out precisely the points at which the flow is no longer separated and, 
in addition, the flow pattern past the body used in calculations is also some 
approximation of the actual situation. However, an approximate expression 
for forces  can still be found using the pierced-layer analogy. 

The projection of forces on the traveling x axis now has a value differing 
fromthat  given by expressions (6.9). Due to the  breakinmedium continuity, the 
"circular pressure"  Q is zero. The projection on the x axis of friction 
forces  on the r e a r  par t  of the body and of the pressure forces  on the 
wetted leading par t  will be denoted byw,, keeping in mind that this  
quantity is determined from relationships of cavitating flow. 
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' t  

x2.Rt 
FIGURE 69. 

The force  F, and moment M, can be  calculated f rom (6.8) and (6.9) on the 
assumption that the average wetted-boundary abscissa  is x? and the separation- 
boundary abscissa  is x , .  Here two remarks  are in order .  F i r s t ,  when 
integrating dFv and dM,= xdF, alongthe x axis the specific inducedmass enR* will 
be re fer red  t o  the wetted par t  of the body. If it is the cylindrical par t  of the 
body which is wetted, then h, = e n R 2 ( x , -  x,): h, = enR'(x;-  x:, , and A,,= 

= - enR2 ( x i -  4). Second, it may appear at f i r s t  sight that the expressions in 

brackets in (6.9) are simply equal t o  the difference of the upper and lower 
values of the quantity in the brackets.  For example, if  R,  = R', then [ enRZ] j  = O .  
However, this  is not so. The point is that, according to  the principle of 
independent expansion of a cavity, the center  of the cavity-pierced layer  is 
stationary relative t o  the quiescent fluid. This  layer  therefore  acquires a 
velocity V ,  f xdu, only upon collision with the body, which imparts  t o  i t  
momentum 1.; (Vu + x 2 0 z ) ,  while the momentum flux A;(V, + X& VI is equal t o  
the pressure  force on the fluid due t o  the setting into motion of layers  at 
x - Xa. As a resul t  of the change in momentum as the layer  moves f rom xz 
t o  x,, there  will appear (as in  Section 3)  a force which is determined f rom 
the expression in brackets in (6.9), but with consideration of the upper and 
lower l imits.  The force and moment a r e  thus 

I 

I 
3 

These expressions a re  fully analogous t o  formulas (6.10). the only 
exception being that now the induced masses h,. I.,, and L,, have different 
numerical values. It is interesting that the cavitation force and moment are 
precisely the same as f o r  continuous flow past  the ent i re  body. 

Above we assumed a value of the specific induced m a s s  pnR1, corres -  
ponding t o  t ransverse  continuous motion of the  pierced layer  along the  body. 
Fo r  partially cavitated flow cases are possible of separation of the fluid 
from the body in the low-pressure region, and this will resul t  in a reduction 
in the induced masses .  
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7. Planing. Principal considerations 

When dealing with a profile planing on the f ree  surface of a fluid 
(Figure 70) one may in principle make the same  assumptions which were 
postulated in considering the motion of a body submerged in a fluid. However, 
differences between these cases  do exist. First, t h e  three kinematic quantities 
V,, V, and o, describing the motion must now be supplemented by two more: 
depth of immersion of some point of the body (for example, of the planing 
element h k ) ,  and the angle 'p, made by the x axis with the horizontal, equal 
t o  the angle of attack a. Second, it should be remembered when using the 
pierced-layer concept that the force exerted by the profile on the fluid 
during submergence is not the total t ime derivative of the fluid momentum /2/. 
If the induced mass  in the direction of velocity of immersion k of some 
profile i s  m * ,  then the momentum of the fluid is m * h ,  but the force i s  not 

$ ( m * h  (see Chapter IV). 

in the x y plane of symmetry.  The Y axis is directed along the planing 
element, while the origin is placed at the trailing point of the planing 
element. The immersion of the planing step and the rate of immersion a r e  
denoted by h, and Ab= -Vu; the angle of attack is a (Figure 71). 

Consider the planing of a plane, fin-shaped plate with deadrise  angle 0, 

Wake boundary 
/ 

FIGURE 70. 

FIGURE 71. 

The p res su re  force of a planing plate on a fluid is 
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The simplified method of plane sections a s  applied tp this case would have 
consisted in calculating the force F, = - dP. ,  where h= V,,=-(V,+ no,). 

C 
However, in the case  of planing the longitudinal t rave l  of fluid layers  is 
substantial and the method of plane sections yields incorrect resul ts .  

We recal l  the principles of the theory of immersion (see Chapter IV). 
When a profile i s  immersed symmetrically through a f ree  fluid sur face  the 
la t ter  curves upward and terminates in a s r a y  sheet which ca r r i e s  with it 
energy and momentum flux. The energy and momentum thus carr ied away 
a r e  nonholonomic in the sense that changing the velocity of the profile cannot 
change the velocity of par t ic les  in the s r a y  sheet and, consequently, a l so  the 
energy and momentum car r ied  by the s ray  sheet cannot be changed in this 
manner. 

Another par t  of the energy and momentum is  imparted by the moving 
profile t o  the main flow, the flow pattern within which is close to that 
induced by impact of a profile, albeit in the case  of a f r e e  surface distorted 
by a previous immersion. This par t  of the flow can be treated as  holonomic, 
the energy and momentum of this region can change instantaneously with a 
change in the velocity of the profile and is determined by means of an induced 
mass  basically in  the same manner a s  for a body fully submerged in an ideal 
fluid. 

If the rate  of profile submersion is A ,  while the impact induced mass  i s  
ma, then the pressure  force of the profile on the fluid is (see (4 .42))  

(6.16) 

The impact and apparent induced masses  in* and M a r e  related by the 

integral expression rn* = - d M ,  where k 3  A, u, beingthetangential 
24 sin B 

velocity i n  the spray sheet and fi the angle made by the spray  sheet with the 

cosfi. The impact induced horizontal. For  a symmetr ic  wedge = 1 - - 
mass  m* and the apparent induced mass  per  unit length of the wedge a r e  
expressed by the approximate formulas 

1 f k  

Using these expressions we can derive expression (6.15) f rom (6.16). 
The flow in each plane parallel to  the y z  plane during planing is 

approximately the same a s  on immersion. Hence planing can be treated a s  
an ensemble of immersions of length elements dx of the planing profile. 
Since the two-dimensional theory of immersion of a profile pertains i n  
essence to  a fluid layer, in the theory of planing based on the theory of 
immersion one must follow the migration of a thin pierced layer, which 
t ravels  ahead of the planing surface. We emphasize again that the concept 
of the "pierced layer" i s  conditional in the sense  that reference is not 
actually had to  a physical layer, but to a mechanically equivalent effect. 

I50 



The t ransport  velocities at points z are  different and fluid par t ic les  which 
form s t r i p  dxlying along the z axis form (at a subsequent time instant) a 
curved s t r ip .  Hence we shall  not re fer  t o  the local, but ra ther  to  the average 
velocity of layer travel.  

Spray sheet 

y t  \ 

Spray root 
FIGURE 72. 

We now calculate the velocity of longitudinal transport. The velocity 
potential cp a t  the  center of the wetted surface of a wedge (Figure 7 2 )  or  of 
some other submerging profile is negative; near  the spray root at  z = cLa the 
potential is zero.  At the la teral  faces of the wedge, at the inner and outer 
surfaces  of the spray  sheet, the potential is positive. The impact induced 
mass is approximately given by 

+efk 
rn* j l= -e  S Cph 

when p -  0. C k -  1. Since cp(cLk) = 0, for small 6 

ax d r  
-rl* 

d (m*h) = - e - cpdz = - Q ~ c u , , .  
4 

At some point Y of the planing element the normal velocity is V,= -(V,+XW,), 
whi,le the ra te  of submersion of the fluid pierced layer (when its abscissa  is X )  

is h .  At t ime t+df point x will move through segment V # d t ,  while the  layer  
will move through segment jV,df+iu,,dt, which yields h = v., - u,,tga. Using the 
expression for uav the effective immersion ra te  is found t o  b e  

h =  "" 

Using the Wagnerian expression * = and noting that for  small cz and 6 

the  induced m a s s  is m* < $ ec', we derive the greatest  t ransport  effect in the  

form 
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At l a rge  /3 the induced m a s s  is relatively somewhat smaller ,  since the 
longitudinal transport  is also smaller .  The condition for separation- f r ee  
flow should consist in the fact that the velocity a t  a l l  points be directed into 
the fluid; hence A, -wa should be g rea t e r  than zero.  

The acceleration h of the layer is defined as the projection, on the plane 
of the layer,  of the absolute velocity of a point moving along the x axis with 

relative velocity vn = i 

inner normal  is 

= i (- V r  + uav). The projection of the acceleration on the 

.. 
The acceleration of the layer is h = .dv- where function x* can have n* dt  ' 

a value different from that given above; only in particular cases,  when 0, = O ,  
does one obtain x*  = K ( u . ~ ) .  The general  expression for the pressure  force 
and moment of a planing surface of an a rb i t r a ry  profile on the fluid is 

(6.17) 

F o r  an a rb i t r a ry  motion of some profile the calculation of force F, and 
moment M, reduces to  the calculation of m* (h) and M (h )  corresponding to the 
values of x* and x(a. /3) ,  as well a s  t o  numerical  integration along the length. 

8. Equations for calculating the planing of a profile 

A fin-shaped plate lands on the water surface a t  constant angle of attack 
a =  const (w, = 0). The velocity vector V, is inclined to  the horizontal angle 8 ,  

s o  that V, = v, cos(a + 8); V n  = V,sin (a + 8); 7 = 7 sin (a + 8) + V,cos(a + e) dl . 
We denote for brevity 

dVn dV, dB 

The pressure  force on the fluid, F = - F , ,  is found to be 

6 
V O  

- - V  - ==hp Substitution of these expressions into (6.18) yields 

For  s m a l l  a and 0 ,  when V, = const, we have V ,  V, (a + e); 0 =- and 
dV,l dO 
dt df 
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Theoretically the moment is M, = I ,  Fm 3 T.% 1 Fa; actually, however, 

it can be somewhat higher due to  the pressure  drop at the transom. 
Comparison of theoretical resul ts  obtained from formulas (6.18) and (6.19) 
with experimental data on steady planing, as  well as on rebounds, usually 
gives satisfactory agreement a t  angles of attack of up to 12 - 15' /14/. 

mental  data on the planing of fin-shaped plates (at 
Sedov 1201, a s  well a s  Sedov and Vladimirov 1211, present much experi- 

= 22.5') over their  par t ia l  

width. An experimental relationship was established of the form = f (a) 
J,Q$ CV 

where fk is the wetted length along the planing element, and b = Pocosa is the 
load on the water. 

Expression (6.18) yields 

With this  relationship one can compare the experimental resu l t s  of /20, 211 
with those obtained from the simplified theory and with the "transport 
theory'' developed here  (Table 12). 

T A B L E  12 

simplified "transport 
= '  deg theory" 

experiment 

4.15 4.15 4.15 
12 2.62 3.16 2.52 
16 1.82 2.11 1.87 

A s imi la r  comparison was made with the experimental resu l t s  of Kolosov 
1211. The excellent agreement between experimental data and resu l t s  
obtained from the transport theory point t o  the fact that it incorporates the 
main features of the effect. 

We now compare (6.18) with equations (6.10). The first t e r m  of (6.18) 
contains the expression @(a,p)eh:V,, - xp MY" = B ; ,  representing the separation 

momentum, i. e., the specific momentum imparted to the fluid layer 
approaching the transom. The ra te  of momentum production at  the t ransom 

1s . -= "" V o s i n ( a + e ) ;  it is composed of two velocities: the velocity of impulse 

discharge V, = cos(a + €0, and the ra te  of increment of the momentum "tied" 
tg a tg a 
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sin 0 t o  the planing surface V ,  = v o x  (Figure 73). When the planing surface 

moves parallel  t o  the free surface ( 8  = 0)  the entire lift is determined by the 
momentum flux flowing past  the transom; hence F, = B;V,COSCL. It is easy to 

show by comparison that Q , ( c c . B ) E ( ~ ,  p) eha. is equivalent t o  the induced m a s s  

bar. The nature of hydrodynamic forces during planing is precisely the s a m e  
as on motion within the fluid. 

3t4 n. 

I 

Horizon 

FIGURE 13. 

When a cylinder of radius R is placed in a fluid s o  that h, (the t ransom 

= & and dh immersion)  is small ,  then according t o  the Wagnerian theory 

hence 

normal t o  the cylinder axis is 

fl (see Section 8, Chapter IV). The p res su re  force on the fluid 

This integral  can be evaluated by retaining in the denominator 1 $. n fl ax+ 
. . . , and this yields 

F,, 1 2 n e v  sin2 tw ( a  + 0) &([ 1 +aa(+ + I n 4  o)]- 
(6.20) 

We recal l  that i f  an infinite cylinder is immersed such that its generatrix 
is parallel  t o  the f r ee  surface,  then the specific pressure  force on the fluid is 

F = 2p Rh' [ x - E ( 1 + In 4 pT)] . 

h These expressions a r e  valid a t  low iT. For planing of a semisubmerged 

cylinder the induced separation induced m a s s  is k;= 

sheet is directed vertically upward, at  the cylinder t ransom M =-!-A*, the separa-  

tion momentum is MVa, and the momentum flux from the t ransom is MV%; the 
normal force is 

Q R ~ ,  but since the spray 

2 1  
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F,, E 5 eR2V2a. (6.21) 
4 

The above considerations can be used for an approximate calculation of 
the lift in other cases  of interest .  

9 .  Equations of motion 

The equations of two-dimensional motion a r e  expressed in vectorial form 

- a s  
@! dl + P* = 6 dl + kM; Me,, . (6 .22 )  

The expressions for the force vector 7. = iF; + jF; and for the moment M; 
contain t e r m s  determined by the momentum flux rolling off the body 
according t o  (6.11)  and (6 .12) .  
(6 .6 ) ,  which a r e  valid for an ideal fluid. 

It is sometimes possible to  consider the motion of a body along the x 
axis independently from the t ransverse motion and to  establish a relation- 
ship between velocity V. and time t o r  the t ravel  distance s .  The two other 
equations ( i f  we omit my and m z ) ,  after division by the constant velocity V ,  
(since ds  = V&), assume the form 

These equations differ from equations 

(6.23) 

Analysis of system (6.23)  is not difficult. The use of these equations 
provides for convenient calculation of the path traveled by the body inside 
the fluid. The characterist ic equation of system (6.23) is 

where 

The induced m a s s  kt2 for bodies of revolution is equal to the mass  of the 
displaced fluid: 
volume; 

real ,  o r  have a negative r ea l  part ,  then steady motion of the body is pos- 

sible in which '3 - 0 and 2 - 0 ,  while v, and o, asymptotically attain 

steady values, which a r e  independent of the initial conditions but a r e  
determined f r o m  the right-hand side of equation (6.23). 

= r  h,, , where r , is the abscissa of the center of the 
hM =r?ha, where r ,  is the radius of ine,-tia. 

If p I  and p I ,  the roots of the characterist ic equation, a r e  negative and 

d o  
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For planing with fixed a the approximate equation of motion with smsl l  
immersion of the planing element is obtained quite simply: mit'+ F, = F,,, . 
The external force e.,,may he re  be the gravity force gm. It is found that 
rebounds of a fin-type plate moving with high translational velocities a r e  
damped out quite slowly. 

10. Vibrations of a slender body. The flapping wing 

It is of interest  to  estimate the characterist ics of a vibrating o r  deform- 
ing slender body from the standpoint of the generation of thrust  and its 
operation a s  a flapping wing. 
swimming mechanism of s e a  animals. 

developed, and practical calculations using it a r e  made difficult by the 
fact that the forces at each instant a r e  determined not only by the instan- 
taneous state of the motion, but also by the vortex t r a i l  left behind by the 
wing, which contains the "history of motion." 
with separation at the trailing edge and the pierced-layer theory make it 
possible to  avoid difficulties involved in the construction of a model and 
calculation of forces ,  

This study can explain to  some extent the 

The vortex theory of a finite flapping wing 1161 has not been sufficiently 

The theory of a slender body 

A s  is known from the preceding, element ds of body length is acted on 
d by the inertia force dF,= F(m*o,)ds and suction force dF, ,  determined by 

the "circular pressure";  the integrals of the projections of these forces  
on the average direction of motion g and on the normal to  it q yield resultant 
forces F and F,(Figure 74). 
the "tail 
c a r r i e s  into the wake a separation momentum per second of k;v,,,Vs, directed 
along the normal separation velocity unl. 
body is - h;vnlV, .  

kinetic energy remaining in the wake per unit path of the "tail" is k; T.  

with velocity V i ,  the average useful power over period T is equal to the 
sum of powers developed by suction force P and impulsive force I :  

Induced separation mass  h; separates  f rom t of the body ( x  = x , )  which has  a tangential velocity Vs. This mass  

The reaction force acting on the 
In addition, the body is acted on by suction force P,. The 

4 
In the case of periodic vibrations of a body moving in the E direction 

(6.24) 

The kinetic energy of the wake averaged over the period is given by 

(6.25) 

At the s t a r t  and termination of each period (0,  T, 2 ~ ,  . . . )  the kinetic energy 
"bound" to  the body is the same ,  but st i l l  another wake wave containing 
energy ( E ]  r is added over the period. The thrust ,  over path V : Z ,  performs 
an amount of work equal to  ( A J r .  
over the period should perform work (N] T = { A  + E )  T, and the hydrodynamic 
efficiency is 

Consequently, the external energy source  

(6.26) 
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FIGURE 14. 

This simple theory is the first  approximation of reality. Apparently 
partial separation occurs at the lateral  surface of the body, and this separa- 
tion is also disregarded. However, the boundary layer at the surface of a 
vibrating and deforming body apparently forms  differently than in ordinary 
cases ,  and the suction force can be more  efficient. 
considered below. 

Some simple cases  a r e  

11. Small vibrations of a solid slender body 

We assume that the coordinate system E ,  q. 6 is associated with the 
stationary fluid, while system x ,  y. z is associated with the body (for 
example, with a delta wing possessing small  aspect ratio). 
consider two-dimensional motions, when the z and 5 axes a r e  parallel, 
the motion of the body center 0 occurs on the average along the 5 axis, 
the absolute magnitude of the velocity of the center i s  V = V, =const, 
but the velocity vector makes an angle $(t)with the 5 axis, while the x 
axis of the body is inclined at angle s( t ) .  
6 a r e  sufficiently small  so that the sines and tangents can be assumed 
equal t o  the angles, while the cosines can be taken as unity. 
conditions 

We shall 

It is assumed that angles and 

Under these 

v x  v: v Y -  - v (9- 6) = q- v6; oh, = Uyl E v ($-e) -k O,= 8. 

Velocity uylr as above, is the normal velocity at the separation edge, 
the abscissa  of which is x =  xl. If the span of the sharp rear edge 2RI 
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is aligned along the z axis ,  then the separation induced mass  is hi = Q ~ R :  (for 
example, a delta wing). 

If we assume the above velocities, the hydrodynamic forces  exerted by 
the fluid on the body, in  their  projections on the moving axes,  can be 
determined f r o m  (6 .4 )  and (6.10) a s  - Fx2,  - F,,, - M,, . 
(with subscript 2 omitted) a r e  

These formulas 

dV dw 
F ,  = hz2 + 2 + h;V,u,,; 

dV,  dwZ 
M, = haVxVu + ~aavrwz + + ha  7 + n i x ,  V,V,,. 

We recall  that these formulas yield forces  acting on the fluid. We shall 
be interested in forces acting on the body projected onto the and q axes: 

r\ --.. 
FE = - ( F X c ~ s ( ~ . E )  + F , c o s ( ~ ,  + Fy6; 

4 - 
F, = - ( F x  cos ( X .  q) + F, cos (y, 11)) = - Fx6 - F,  

The kinetic energy remaining per  unit length of the wake is 

[ V ( g -  d) + x,?$l2 = E ’ .  4 This energy is equal to the work performed by 

Substitution of suction force P’over unit path length along the E, axis.  
the velocities and accelerations into these expressions gives 

The energy expended in moving the body can be expressed in the form 

The instantaneous efficiency is then 

where A = F V .  L 
W e  now consider simple cases .  
1. R e c t i l i n e a r  a n d  u n i f o r m  m o t i o n  o f  a b o d y  ( w i n g ) .  

In  this ca se  q~ = 19 = O .  Consequently 
. .  
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The efficiency q,,= e tends t o  unity i f  6 tends t o  rp; at 6 = 0 ,  qo = $ .  F o r  4 
this ca se  Figure 7 5  shows graphs of the variation in quantities N 
divided by k;VY, as well as of q, as  a function of 19 a t  J 1 =  20". 

or  4 = V$ = V$ocos kt , and 6 = 6, sin (k t  + e). 

E ,  P and I ,  

2 .  H a r m o n i c  o s c i l l a t i o n s  of a b o d y .  We assume thatq=asinkt, 

FIGURE 75. FIGURE 76. 

Calculations yield the following average useful power over period I: 

the average expended power is 

the average efficiency is 

It is seen f rom these expressions that in order  fo r  the body (wing) t o  
have thrust  during purely torsional oscillations, when vo = 0, the Strouhal 

number S, = * should b e  la rger  than unity. According t o  Nekrasov /16/ 

the  condition for  porduction of thrust  for  an infinite wing with allowance for 
the vortex t r a i l  is S, > 0.942. 

V 
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1 
The previous formula yields, for  $,, = 0, the expression (qJ= + ( I  - -) 

for the "impulsive" thrust  [ F g )  =T W i  (S:- 1).  For  example, a delta wing 

with a span of 0.5 m and a chord of 1 m should, at  I x l I =  0.5 m, vibratewith 
frequency k > 10 radianslsec in o rde r  t o  develop thrust  a t  velocity V-5 m/sec .  
At 6,- 0.1 radian (5.73") and k =  20 sec-', for this case,  when moving in 
water,  obtains a thrust  of 3.75 dynes at  efficiency 1q,)=0.375. 

A, V' s: 

6 
Va 

Setting u = 2 ,  and making use of the fact  that the separation edge is 

usually located at the trailing par t  of the body of revolution ( X I  <O), and 
introducing the Strouhal number S t ,  the preceding formulas can be expressed 
in the form 

(6.29) 

The character is t ics  of a wing with small  aspect ratio, at  0 = 2, a r e  2 

shown in Figure 76. It is interesting that the efficiency is the highest a t  
S, = 0, i. e., for quasisteady motion of the wing. The impulsive thrust  
coefficient increases  with increasing S, ;  however, the validity of the 
principal hypothesis for high S, requires  a more  careful check.*: 

12. Motion of a flexible body 

In this case it is best to u se  the inertial  coordinate system x ,  y, z which 
moves in a straight line and uniformly relative to the quiescent fluid (the E ,  
11.5 system) with velocity V ,  = V ,  while the flexible body occupies the x axis 
segment f rom x = x1 t o  x = x,(Figure 74). The ordinate of the body along the y 
axis is denoted by q = q ( ~ . f ) .  If the cross-sectional shape is assumed to be 
unchanged, then the specific induced masses  will depend only on the abscissa  
x ,  and in general  m* = m * ( x )  = KeR*, where K is some constant for each specific 
c r o s s  sectional shape. In the case  of a circular  or elliptical c r o s s  section 
with major semiaxis R ,  K = n .  The velocity of the hole in the pierced layer 

normal to  the curvilinear axis is u, = % - V': = qr - Vq I ,  . the specific 

momentum of the fluid is m* (x) on ( x ,  1 ) .  

through the pierced layer,  is 
The specific normal force acting on the body, generated upon i t s  passage 

- dF, = 2- [mi" (xl  u,, ( x ,  t ) ]  ds = [ - d;; - Vm, - V r l d  + 
dt 

+ m* ('l,, - + h J l  ds 

In addition to the normal force,  element dsis acted upon by the ' 'circular 
Qui pressure ' '  - 2nR 2 ,  which yields the a rb i t r a ry  force applied to  the body 

The author is unaware of experiinents with high-frequency fluctuations of a wing in a flow. However, the 
inethod of high-frequency oscillations is used tu  determinc the  induced mass, and consequently, a near-ideal 
flow is attdiiied. A l l  the  assumptions of the pierced layer  hypothesis arc, however, valid a t  relatively low S,. 

160 



where S is the area of the induced mass  (nRa). 
The projections of elementary forces  on the x and y axes are 

dFz  = dF, - '1, dF,, 

d F ,  = dF, + q, dF,. 

(6.30):;: 

(6.31) 

The total instantaneous forces  acting on the entire body a r e  obtained by 
integration: 

According t o  Section 10, the calculation of forces  F, and F ,  for periodic 
motion can be avoided by integrating equations (6.31). F o r  this i t  suffices 
t o  use  the character is t ics  of the wake, which can b e  calculated if the 
t ra jectory of the "tail" is known. However, suction force (Pi must  s t i l l  be 
calculated. 

The instantaneous value of the suction force, according t o  equations 
(6.31) is 

I 

I 
I 

The specific resu l t s  depend on the form of functions q(x. t )  and R ( x ) .  
The wake momentum h; u,, V ,  can be  calculated in the s a m e  manner as for 

a solid body. In fact urn, = V ( 9 -  6). The instantaneous force generated by  the 
momentum flux is 

and the energy of the wake is 

Let us  assume that a wave t ravels  along the  flexible body in the negative 
Y direction with phase velocity c and constant amplitude Q. Then 

Clear ly  

The normal  velocity of the "tail" at x - xl, for a body of length L, - x t -  xl, is 

The circular pressure is given by this expression for a circle and all the ellipses (including a plate) with 
semiaxis R for motion a t  velocity u,along the perpendicular axis. 
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We assume 

and 

nR2(x)  = nR; x P - x  

L P  * 

Hence 

Simple calculations yield values averaged over some period: 

(6.32) 

Simple calculations show that a fish with a ta i l  span of 0.5 m ( ?(=20 kg/m) 
V 

and relative amplitude 3 L = 0.1 develops, a t  velocity 10 m/sec for 7 = 0.4, 

on the average 3750 joules/sec of power and produces a thrust of about 
2 6  dynes (of which 45% is due to  the suction force) at  a mechanical efficiency 
of about 0.7. The length of the fish is L , = 2 x n L ,  where n is the number of 
waves over length L .  

The pierced layer concept makes it possible t o  estimate forces for a 
large variety of cases  of bodies in a fluid. It is seen from comparison with 
experimental data that these estimates a r e  sufficiently accurate and reliable. 
This makes it possible t o  expect that these methods, when appl iedtocases  
for which experimental data a r e  unavailable, will yield resul ts  close to 
reality. 
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Chapter Seven 

C A  VITA TING H YDR OF OILS 

When hydrofoils move at  high speed, cavitation may a r i s e  at the low- 
pressure  par t  of their surface. Cavitation, which is related to the 
formation of gas and vapor bubbles, markedly modifies the hydrodynamic 
forces. As the velocity is increased, bubble-type cavitation t ransforms 
into developed cavitation, when l a rge r  cavities with smooth inner boundaries 
a r e  continuously cast  off the foil [ a l so  known as supercavitation]. The 
development of cavities extending f a r  past the hydrofoil is also aided by 
their  entrainment of atmospheric a i r .  

Studies show that the work performed by a cavitating hydrofoil is, from 
the mechanical standpoint, identical to  the work corresponding to continuous 
flow past the hydrofoil. Hence the well-known theory of wings with finite 
span i s  for  the most par t  applicable also to cavitating hydrofoils, i r respect ive 
of whether the cavity forms  at  the r e a r  of the foil o r  whether it extends 

foil consist in the effect exerted by the close-by f r e e  surface, which 
pr imari ly  affects the induced drag and downwash, as well a s  the lift of the 
profile. However, for thin cavitating hydrofoils the proximity of the f r ee  
surface i s  pr imari ly  equivalent to the effect of the upper wing of a biplane 
on i t s  lower wing. 

such high velocities that the weight of the water has no appreciable 
effect. Hence here  the ent i re  theory pertains to the motion of the foil a t  
infinite Froude numbers. However, for cavitating hydrofoils, particularly 
a t  small  immersion depths, when the upper streamline markedly dis tor ts  
the f r ee  surface, the asymptotic theory, which i s  analogous to the theory 
of a wing in a continuous medium, must be substantially modified to conform 
to the special features  of hydrofoils. 

1 
I 
l over the entire upper surface of the foil. The specific features  of a hydro- 
I 

Usually hydrofoils and (all  the more so) cavitating hydrofoils operate at 

1. Flow past a profile and past finite-span hydrofoils 

Figure 77 shows four patterns of flow past a hydrofoil profile. Pat tern 
I corresponds to continuous flow, when the Chaplygin- Zhukovskii condition 
is satisfied at  the trailing edge. 
upper par t  of the profile moves with the same velocity as the lower 
s t reamlines;  both s t reamlines  merge at the back of the profile. Pat tern I1 
depicts cavitating flow downstream of a curved wedge; the s t reamlines  
flowing down the upper and lower par t s  of the profile a r e  now separated, 

The streamline flowing down from the 

163 



result ing in the formation of a cavity behind the profile. Since the flow 
velocity along the cavity boundary is constant everywhere, the Chaplygin- 
Zhukovskii condition is always satisfied a t  the trail ing edge at the top and 
bottom of any cavitating profile. Pat tern 111 differs f rom pattern I1 only by 
the fact that separation of the top s t reamline does not occur at  the trail ing 
point D, but at  point E a t  the upper surface of the profile. Pat tern IV 
corresponds to Rayleigh flow past  an inclined plateAB, when the upper 
s t reamline separates  at  point A. 
not, in principle, different than pattern 11, since in all these cases  we 
can consider the flow past curved wedge ABD. 

Obviously, flow pat terns  I11 and IV are 

i 

FIGURE 77. FIGURE 78. 

The idea of constructing a noncavitating profile with a trail ing cavity 
consis ts  in  the following. Calculations of cavitated flow past  a thin wedge, 
due to Bobylev /IO/, show that the p re s su re  at  the edges of the wedge is 
elevated; hence the disturbed velocities a t  the edges oppose the free- 
s t ream direction. It may be assumed that a vortex sheet with vortex 
strength v is distributed along the la te ra l  surface (or approximately along 
the axis of symmetry)  of the wedge. This sheet induces velocities coinciding 
with the free flow direction a t  the upper edge and opposing the free-flow 
direction at  the lower edge. The vortex-induced velocities are added to the 
perturbation velocities produced by the wedge i n  such a manner that the 
velocity opposing the f r e e  s t ream decreases  at the top and increases  at the 
bottom. As a result  the pressure  at the top edge of the wedge decreases  and 
a t  the bottom wedge increases;  this produces lift. If the resultant p re s su re  
at each point of the upper edge is s t i l l  higher than in the free s t ream,  then 
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there  will be no cavitation a t  this edge. It will be seen below that in o rde r  
t o  obtain flow about a wedge with a vortex sheet, the wedge axis must be 
curved in  some appropriate manner. 

Figure 78  shows the flow pattern about a finite-span foil in an  infinite 
flow. The cavity developing at  the rear of the foil will cut a hole Sc in 
plane Z,, perpendicular to  the flow velocity. Had the flow past  the foil been 
noncavitating, then the f r e e  vort ices  cas t  off the foil (in the idealized 
formulation) would have been aligned along the dashed line AB. Actually, 
both the vortex sheet AB and cavity S ,  behind the foil perform a complex 
motion and roll up at  the edges, with resultant departure f rom symmetry 
relative to  the z axis.  However, as in the vortex theory of airfoils 161, 
we shall  es t imate  the effect of the cavity by assuming it to  be symmetrical 
relative to  the y and z axes.  The lift Y on the foil is t h e  reaction of the 
foil p re s su re  on the fluid which, in the wake behind the foil, induces down- 
wash of the wake and i t s  surrounding fluid. The field of absolute velocities 
i n  the 2, plane is shown in Figure 78. 

Fo r  a hydrofoil moving a t  depth h close to the free surface, the flow 
pattern behind the foil in the P, plane is shown in  Figure 79. 
show that such a flow arises past  a biplane when the distance between its 
wings is 2 h.  

Below we shall  

6 ,  

Actual flow 

\ - Outline of schematic cavity L 

FIGURE 79. 

It is c l ea r  without going into proofs that when the top and bottom 
boundaries of a cavity are merged, a vortex sheet is produced corresponding 
to  continuous flow past  a foil, and the entire theory of ordinary airfoils will 
fully apply to this  case.  The existence of cavitation modifies the flow about 
a hydrofoil; these changes are considered below. 
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2. Lift and induced drag  

We now apply the momentum theorem to the control surface formed by 
two infinite planes X, and 2, paral le l  to the tj z coordinate plane, where plane 
2, moves ahead of the foil while intersects  the wake in the manner shown 
in Figure 78. 
x axis ;  the projections of the perturbed velocity vector 
axes  are ux. uy and p . 

The free s t ream velocity is V , ,  and is directed along the 
on the coordinate 

From the momentum theory the drag  X and lift Y are  

X = [eW0 + uJ* + PI, dZ - [ e (Vn  + uA* + PI, dZ;  

(7.1) xi s, 
1, L. 

Y = [e (V,  f ur)uU], dZ - { [eCV, + u,) v,l,dZ. 

The pressure  in the Z, and Z, planes is obtained from the Bernoulli 
theorem, f o r  example, P, = C - : [ (V ,  + vJz + u l f  $1. The expression for  lift 
does not contain the pressure ,  since the control surface is perpendicular 
to  the flow. 

No t e .  The application of the momentum theorem to the calculation of 
forces  acting on a foil requires  c a r e  in selecting the control surface. It is 
known that the vortex system trailing the foil is equivalent to  doublets 
distributed along the surface subtending the vortex. If the foil is replaced 
by an equivalent vortex L with velocity circulation r ,  leaving behind i t  t ip 
vort ices  (horseshoe vortrx) ,  then the equivalent vortex sweeps out pe r  unit 
t ime an area VoL,  the momentum of the fluid increases  by an amount e W , L  = Y ,  
and this quantity is equal to the increase in the moment of a doublet whose 
axis i s  directed oppositely to Y .  
Yt-erL1,. where l1 i s  the total cavity length. 

the o rde r  of ’. where r,, is the distance from the coordinate origin to  the 

Z, plane. Integrals over Z,, which contain the velocity uX or  vu to the f i rs t  

power, will be of the order  of A ,  since the a r e a  of plane C, increases  with 

increasing ro as r:. In o rde r  for  these integrals to tend to zero  it is 

required that - -0, and this can happen i f  r, is of a higher o rde r  than lk 

(for example,r, = L:). 

The moment of the doublet is then 
Velocity v in the E, plane is of 

1; ’ 

1 

10 

lk 

r0 

We now apply the continuity equation 

m 1 V g Z  - 
z. &-Sk c 

(V, + U,)dT. = V o S k  - ( U, d Z  =O. 

Noting that the pressure  in plane 8, is p, = C - !!!! while the p re s su re  within 

the cavity is pk,  and substituting these resul ts  in (7.1), we derive 
2 
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The largest  cavity, and consequently the greatest  effect on the flow about 
the hydrofoil, is obtained a t  zero  cavitation number and po = p r .  

2 5 (0; + u 2 d Z  = T expresses  (from the physical point of view) the kinetic 2 

energy of the absolute motion of the fluid i n  unit-thickness layer  Z2; 

Integral  
OD 

sk 

integral  p s  u,dZ = B, represents  the momentum of the fluid within that layer.  

The fluid motion in  the t ransverse  plane 2, far downstreamofthe body is found 
to be virtually two-dimensional / 6 / .  

sk 

N o  t e .  W e  show that integrals 

m 

, , - ~ ~ < d T  2 and I, - e j  u p u d x  
S& sh 

tend to  zero  as plane 2, is moved downstream of the foil to  infinity with 

x of the o rde r  of F .  Velocity v, is a t  i t s  maximum at the cavity boundary, 

where i t  is proportional to 

cavity contour in  the x y  plane. Hence 

l k  

1 $, provided that y, = \ ( x )  is the equation of the 

0 

I ,  < vrh Q 1 
sk 

d x  = uxc B p  

In fact the hydrofoil is trailed by a three-dimensional cavity, which expands 
slower than a plane cavity. 
fi, and consequently y;' decreases  fas te r  than l / w ,  and as X + W ,  1, tends 

1 1 
to  zero  not slower than T. Hence t, decreases  not slower than 7. 

The ordinate of the plane cavity increases  as 

Neglecting integrals  I, and I ,  due to  their  relative smallness  we obtain 

X = T; Y + VoBv = 0. (7.3) 

As is known, for  a foil with elliptical lift distribution over  the span the 
momentum in  continuous flow is B, = m*VU, where rn* is the induced m a s s  

pe r  unit length of plate with width L, equal to e $  L2, while V,  is the ver t ical  

wave velocity f a r  downstream of the foil. Clearly in this case the kinetic 

energy is T -. " Z  
2 
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The induced d r a g  and lift are related by an  expression obtainable f rom 
( 7 . 3 )  by eliminating Vu: 

(7.4) Y9 x ,  =- 
2 r n * ~ a  * 

The lift and induced drag  can also be expressed by the standard equations 

evg ev,l x, = C,( s c r  2 ; Y = c& 2 

Noting that the aspect ratio is k = 2 and substituting the above 
s cr 

expressions for  X ,  and Y into formula (7.4),  we obtain the expression for  

the induced drag  coefficient known from [thin] wing theory, cd = 2. The 

flow downwash angle in  the plane of the lifting vortex is a, = $; the 

downwash angle far downstream of the foil is 2a, = - 2 = 2 2 .  

2 
na 

nh 

3. Mfect of cavity on the downwash 

W e  now represent  the velocity potential of absolute flow in plane Za by 
the sum of two potentials 'pl +qz. assuming that v1 corresponds to the 
general  descending motion of the cavity while potential vI corresponds to 
i t s  expansion. Integration over the closed loop enclosing the cavity in the 
plane .Zz (with allowance for  our  assumptions) yields 

$9 ds = 0, 4 q2 cos (y.-n) ds - 0. 

The momentum component is 

B, = - $ ea, cos (y,*n) ds, 

while the specific kinetic energy is 

(7.5) 

Since potentials vil  and 'pz satisfy the Laplace equation, we have on the 
basis of Green's theorem 

For a slender cavity integration over contour s can be replaced by 
integration over camber  [mean1 line A B  (Figure 78), t ravers ing it in both 
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directions. Denoting the values of Q and $ above line A B  by a plus sign 

and those below line A B  by a minus sign, (P,,+, = - cp,(+and - E -- 

while (p2,+, 

energy consis ts  of two independent te rms:  

d-+ , d% 
an,+, an,-, 

(pa-) and 2% = a. Consequently, I = 0 and the kinetic 
%+I an,, 

(7.7) 

This expression can be given the following mechanical interpretation: 
energy T ,  corresponds to the general  motion of the cavity with velocity V, 
and i t s  deformation when moving away from the coordinate origin. As w a s  

pointed out T, = m*%, the corresponding momentum being B, = m*V, /15/. 

Energy 7 pertains to the expansion of the cavity and numerically should be 
equal to the Bobylev drag, induced for  cavitated flow past an undistorted 
wedge o r  other profile. 

velocity in the plane of the lifting vortex. For this we use the potential 
theory in the form 

2 

We shall now clarify the effect of the cavity on the value of the induced 

We take a s  the cavity-surface element ds a s t r ip  of the contour contained 
between planes C, and Si separated by distance dE. The distance between 
the far point A(n. y, zl and the point B(5 ,  q, 5) on contour s in plane 2, is 
I = I/(x - E)*+  (y - q)z +(2-&)2 , while the distance between point A and the 
center  of the cavity c r o s s  section in plane 2, is r l =  I/(x-Qg+y* + z r .  For 
distances r and I ,  l a rge  compared with and & we have approximately 

As  a resul t  of substituting these expressions into that for  the potential 
and making use of the properties of potential q1 and of the symmetry relative 
to  the x y  plane, integration over s gives 

The induced-velocity increment a t  the center of the lifting line ( n  = 0, 
y = 0, L = 0 )  due to the motion of a cavity element of length 6E is 

For continuous noncavitating flow past a foil S, = 0 and the moment of 
B m B 

an elementary doublet is f ra ther  than S,V, + -$. We denote the induced 
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velocity ar is ing at  the center  of the lifting l ine on cavitated flow past the 
foil by u t ,  and the induced velocity of the s a m e  foil with the same lift 
but without cavitation by v; ; the cavity cross-sectional area at point *=El  
is denoted by S,(E,). 
strength of doublet moments 

Since the induced velocities are proportional to the 

Had the cross-sectional a r e a  of the cavity been S, (&)  over  i t s  entire 
length, then correction function f & )  would have been unity. However, f o r  
E > &the  cavity is wider than a t  point x = El, and over the range 0 < E  < E, 
i t  is narrower than a t  point E l ;  hence f (&) differs f rom unity. In o rde r  to 
take into account the effect of a n  infinite expanding cavity, we shall first 
subtract the effect of a cavity with constant c r o s s  section S,(E,) a t  the 
axis segment from 5, to infinity, and then add the effect of an expanding 
cavity. 

The expansion of a plane cavity is governed by yr=  e n ,  where b is 

the foil chord and C, is i t s  d rag  coefficient. For a delta-shaped foil the 
Bobylev drag  coefficient i s  c, = c, = 8 p* 1101. A cavity forming behind a 
finite hydrofoil expands slower than anplane cavity, and therefore for a 

wedge-shaped profile S, < 4 4% r+ pT. Hence 

Here 6 denotes the distance from the origin, referred to the span L .  The 
induced velocity is 

For  slender delta-shaped foils with l a rge  aspect ratio the velocity 

ratio 3 is close to unity. F o r  example, i f  2 p  = 0.1 radians and the aspect 

ra t io  b = 5, then %= 1.042, i. e., the induced d r a g  increases  by 4.270 as 

compared with a noncavitating hydrofoil. 

"i 

"i 

4. Effect of hydrofoil immersion depth 

The derivation of the momentum theorem presented in  Section 2 applies 
unchanged also to a hydrofoil moving horizontally at depth h,  and so 
formulas (7 .3 )  and (7.4) a r e  applicable a lso to this case.  Observations 
show that a cavity behind a hydrofoil has  no l a rge  t r ansve r se  deformation 
over a l a rge  length and is s imilar  to Prandt l ' s  "board1'; at  the rear, where 
the cavity breaks up, it degenerates into clearly defined vort ices  with 
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gas-bubble and foam-filled cores .  The generation of a cavity is shown 
schematically in Figure 80. Hence, introducing the induced mass  m* of the 
wake and treating the flow behind the hydrofoil a s  induced by "impact 
of a plate," we derive a pattern close to  the actually observed flow pattern. 

h 
L 0.0346 0.0588 0.185 0.393 0.557 - 

kl 1.715 1.610 1.308 1.137 1.08 

't 

1.434 

1.032 

FIGURE 80. 

The effect of the proximity of the f ree  surface, which consis ts  in 
increasing the induced drag, can be quite graphically attributed to the 
reduction in the induced mass  at  the wake with reduction between the 
hydrofoil and the f r ee  surface, and consequently, the need to impart  to the 
wake a higher t ransverse  velocity for  exciting the same lift.  The induced 

mass  of the plate a t  infinite depth ( h l L  -. 03) is m:, = Q 

surface ( h/L + 0 )  the induced mass  i s  half as large and equal to 4 E ef  L*.  

Thus m* (+) = m;/k (1). The induced drag coefficient c,, and the induced 

L2, while a t  the 

downwash angle a, a r e  related by the expression 

(7.10) 

Function k, (+) can be calculated by solving the problem of impact of plates 

separated by a distance 2 h (see Figure 79). The values of k, calculated by 
I 

Fedorov a r e  given in Table 1 3 .  At t imes the quantity x ,  =T will be required. 

TABLE 13 
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The effect of hydrofoil immersion can also be calculated f rom other 
considerations. For infinitesimal disturbances of the f r ee  surface the 
condition of pressure  constancy at  the surface yields for  the boundary 
condition of the perturbed velocity potential 'p at  y = h the expression 
- d2v = 0. For very high velocities (more precisely a s  V o + c o )  dx' vg dy 

the second te rm drops out and condition 

perturbed velocity u = g i s  constant a t  the f r ee  surface, but since 

atx=--, we concluded that u = 0 everywhere. In order  to satisfy this 
boundary condition it may be imagined that the upper half-space is also 
filled with a fluid, while vort ices  and sinks with potential-rp a r e  placed at  the 
image points with respect to the f ree  surface. Potential 9 should be selected 
so that the total potential 'p + 'p sat isf ies  the Laplace equation A(rp +;) = 0 
and the above boundary condition at the f r ee  surface. In particular, the 
vortex in the bottom half-space wi l l  be mapped onto the upper space with 
circulation 
reversal .  
past such a foil in an unstaggered biplane cel l  with interfoil distance of 2 h .  

therefore  the same lift, the f ree-  surface proximity effect is equivalent to 
mutual induction of the biplane foils. 
g rea te r  than in an infinite fluid and is obtained from the expression 

= 0 consists in the fact that 

= 0 

of the same sign, while the sources  a r e  mapped with sign 
The motion of a hydrofoil a t  depth h is thus equivalent to flow 

Since the actual and image foils have the same circulation and 

The induced drag of a hydrofoil is 

(7.1 1) 

Quantity (1 + u) ,  taken from biplane theory 1171, is equal to the value of k , ,  
calculated by Fedorov from the problem of twin-plate impact 1 2 4 1 .  

For small  depth of hydrofoil immersion, the f ree  surface above the foil 
becomes distorted and the thickness h of the water layer  on top of the foil 
differs from the value of h,, of a stationary foil. The f r ee  surface in relative 
motion is a streamline; hence the central  s t reamline ( t  = 0 )  sat isf ies  the 

equation - = 9. Velocity up is induced by the vortex system of the 

hydrofoil proper, a s  well a s  by the image system. 
approximate formula 

& 

vo "y 

Calculations yield the 

c b  L h, ,  = h - * [ In - 1 ) .  (7.12) 

Strictly speaking, the perturbations of the f r e e  surface due to the 
hydrofoil motion should have been taken into account in mapping the vortices 
and in constructing the biplane pattern, as  in calculating the induced wake 
mass.  In addition, some reduction occurs  in the velocity of flow past the 

hydrofoil due to the image induction ( Vb = VO- Gh). However, a theory fo r  

taking these effects into account has  not yet been developed, and so  we shall 
res t r ic t  ourselves  to the above remarks .  
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5. The lift of a profile a t  small  immersion depth 

h 
L 0 - 

Y 0.5 

2h_ 0 

x, 0.5 

In addition, the increased induced downwash near  the f r e e  surface or 
the closeness of the second wing of a biplane resul ts  in reducing the 
derivative of the lift coefficient with respect to the angle of attack. This 

effect is taken into account by introducing the function x P ( q )  =s. Data 

obtained from calculating function x, f rom Carafoli 's formula / 6 /  (carr ied 
out by Fedorov 1241) a r e  presented in Table 14. 

c", 

0.1 0.2 0.3 0.4 0.5 1.0 

0.68 0.78 0.84 0.89 0.92 0.91 

0.2 0.4 0.6 0.8 1.0 2.0 

0.62 0.71 0.77 0.82 0.86 0.95 

W e  shall consider a second, quite simple derivation of the expression 

for  functionx, (%), based on the Lagrange equation of the second kind. 

Suppose a plate with width 2 a  = b has velocity P = iV, + jV, relative to the 
stationary fluid (Figure 81a). 
determined uniquely by the motion of the plate, and hence the fluid can be 
treated as a system of mater ia l  points with ideal holonomic constraints. 
Fo r  translational motion of the plate we have two obvious generalized 
coordinates, which a r e  the motions along the y and x axes. W e  introduce 
a third generalized coordinate a ,  equal to  half the width of the plate, and 
determine the suction force. The kinetic energy of the fluid will be 

T = nQa' +, where npaZ=m* is the known expression for the induced mass.  

Applying the Lagrange equation - -. - - = Qt to the generalized 

The motion of an incompressible fluid is 

V2 

d aT aT 
*t aq, dq, 

coordinate a ,  we derive 

This generalized force Q, is applied to the fluid; at each end of the plate it 

is equal to T Q v  and is directed toward the origin along the x axis. The 

suction force acting at  each end of the plate w i l l  be P. = - YQ,. It is 

produced by infinite velocities a t  points f a. W e  select the velocity 
circulation r in such a manner that the si' 'on force at  point x = - a 
disappears. Evidently, here  the velocity ,,oint X =  + a  is doubled from 
symmetry conditions, while the suction force increases fourfold as 
compared with a plate without circulation. Thus P, = 0 and P, ,  = 2xpaVi. 

I 

I 
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FIGURE 81. FIGURE 82. 

Since by the formulation of the problem V ,  = - V s i n  a, and for  flow past  
a plate with circulation the absolute value of the resultant force is 

R = p V r  = - , we have finally P 
sin a 

P = 2mePsina; 
r, = 2mV sin a: c;- = 2n 

These formulas  express  known propert ies  of a plate placed in a n  
infinite flow with circulation. 
two biplane plates (Figure 81b) can  be represented as an expression for the 
induced masses  of each plate: 

The solution of the problem of impact of 

mi (7) h = ~ c , , x ]  (7) h = q a % ,  (+) . 

I From physical considerations < X ,  < 1 when 0 < <a,, since the induced 

m a s s  for  a plate floating on the free surface is one-half that for  a plate in  
an infinite fluid. 

Applying the Lagrange equation to  the kinetic energy of one plate 
V2 T = 

respect  to the argument by x ; .  we have 

(+),-Y and denoting the derivative of function x ,  - x1 ($1 with 
2 

Repetition of all the preceding considerations for  different angles of attack 
yields 

r(+) c;(+-) 

r- =-= [%, (+)- &;(+)]43. (7.13) 
c", 

It is thus found that the reduction in the lift of a hydrofoil when approach- 
ing the f ree  surface is due to  a reduction in the suction force. The graph of 
functions X I  and xt is given in Figure 82.  Satisfaction of the Chaplygin- 
Zhukovskii condition a t  the trail ing edge of the foil requires  a smal le r  
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velocity circulation and consequently a smal le r  lift. All  these conclusions 
pertain to  a hydrofoil in continuous flow, a s  well a s  to a cavitating hydrofoil, 
but in the case  when the cavity is situated at the r e a r  of the foil. 

6 .  Hydrodynamic features  of hydrofoils 

The hydrodynamic forces  of a hydrofoil in both noncavitated and cavitated 
flow a r e  calculated from the same hypothesis of a plane section which is 
generally postulated in the theory of large-span foils. It is assumed that 
foil-span element dz has the same lift a s  a s imilar  element of an infinite 
foil placed at  an  effective angle of attack. 
immersion reduces c t  of the profile, increases  the induced flow downwash 
u,, and changes the effective angle of attack due to the profile thickness. 

(Figure 77, flow pattern 11) has propert ies  c lose to those of a profile in 
noncavitated flow. However, angle of attack a, measured from the chord 
line, is smal le r  than the angle of attack measured from the chord by the 
amount p (Figure 83). When the profile moves at a large depth, does not 
affect the lift, but a s  the foil approaches the f ree  surface, the effect of the 
profile taper demonstrates itself in increasing the effective angle of attack 

The depth of hydrofoil 

It will be shown below that a wedge-shaped profile with wake cavitation 

/ 2h by the amount pX \T ) .  As shown by Fedorov x (%) xi’ [T) - 1. 

For  a n  ideal foil c& = 2n; however, it  was found experimentally that @- 

is somewhat smal le r  than 2n and therefore we s h a l l  set c;- = 2nk,,, where 
k, < 1.0. 

Using the above resul ts  we express  the lift coefficient a s  

(7.14) 

. For  an infinite fluid x1 = 1 and xt = 1. For 

a very smal l  immersion depth K, and xq tend to 0.5, while cy is halved. 
Angle a, depends on the profile camber;  this angle will be defined below. 

FIGURE 83. 
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The induced drag  and induced downwash are determined from (7.10). If 
the foil is not thin and a wide cavity forms  behind it,  then the additional 
downwash due to  the cavity (see Section 3 )  can be calculated from the 
expression 

The induced drag  coefficient and the downwash angle a r e  finally obtained 
from the expression 

(7.15) 2, 
CXZ 3 nhx, I1  + T) C P t .  

The value of 1 + T for  a wedge-shaped [tapered] profile is found from 
formula (7.9). This quantity has  been incorporated into (7.14). In addition 
to the induced drag  the foil is acted upon by the Bobylev d rag  (see Section 9), 
the friction d rag  and Zhukovskii [form] drag. 

profile nose. In round-nosed airfoils a large par t  of the suction force  
actually materializes and the Zhukovskii d rag  is low. In o rde r  to prevent 
cavitation and flow separation, hydrofoils are usually designed with a sharp 
leading edge, at  which the suction force does not materialize.  Flow past  
this  sharp edge produces a vortex which is car r ied  away by the flow. The 
calculation of Zhukovskii d rag  is given below. 

a cavitating hydrofoil differs f rom one without cavitation only by the 
Bobylev drag  and by a usually quite insignificant increase in the induced 
d rag  due to  expansion of the cavity. 

The Zhukovskii d rag  arises as a resul t  of l o s s  of suction force at the 

It can be concluded from the above that f rom the hydrodynamic standpoint 

7 .  Flow past  a wedge-shaped profile 

We now consider the flow past  a thin tapered profile with a cavity, 
applying all the standard hypotheses of thin-wing theory (Figure 83) .  
The x1 yl coordinate system associated with the profile is oriented so that 
the origin is located at  the middle of foil chord 6 and the x1 axis  coincides 
with the chord line A B  of profile ABD. The profile is wedge-shaped and in  
general the angle made by the camber  l ine with the wedge generatrix is fp, 
which is a quantity dependent on the abscissa  x l .  The equation of the 
profile camber line is y1 = 1 ( x , )  and the angle of attack is a. If the flow is 
assumed to  be potential, then the normal  velocities a t  the lower ( - )  and 
upper (+) boundaries a r e  

Angle a, f ' ( x , )  and p for  a slender profile are very small;  hence the profile 
can be moved to the x axis  on the assumption that the boundary conditions 
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(7. 16) 

are satisfied on the x-axis segment f rom - a to  + a ,  where Q = +. The f i r s t  

of boundary conditions (7.16) is the ordinary condition of thin-wing theory 
and pertains to  the camber  line. The 
second boundary condition pertains 
to an uncambered wedge. 

If it  is assumed that a vortex of 
strength y = y ( x )  is situated on 
segment b of the x axis, then an 
elementary vortex located at  point 
6 of this  axis has  a circulation dT = 
= y ( < ) d L .  According to  the Biot - 
Savart law the following velocity is 

_ I  induced a t  point I[: 

Y ,, 

i' x 
do, ( x )  = -- 

2n ( X  - 5) ' 

Integrating, and substituting the result  
into the first of equations (7.16), the 
known equation of thin-wing theory is 

FIGURE 84. obtained: 

+a 
1 + 2 n ~ ,  - = f' ( x ) .  (7.17) 

-a 

Function f' ( x )  can be found by specifying function y (5) with the aid of 
equation (7.17). 
y = f ( d .  Equation (7.17) can be solved by the well-known Glauert method. 
Traversing a vortex sheet element along the edges of rectangle 1, 2, 3, 4 
(Figure 84) yields 

A second integration then yields the airfoil  equation 

UI+I d X  + V,dy - Ul(+,dX - v,dy 3 - ydx. 

Since v1 is continuous when crossing the x axis, UI,-, - uIf+, = - Y or ,  
by virtue of symmetry, y = 2 uI(+,. The tangential velocity thus possesses  a 
discontinuity when crossing the x axis. 

free s t reamlines  I and I1 extend to infinity. According to  the preceding 
definitions the velocity circulation is 

It is assumed that a cavity rolls of the edges of the wedge and that the 

+a 

= r y  (5) 4 = (ut,-, - uI,+))d5. 
-a -a 

Figure 84 shows the flow pattern and flow boundaries. Since contours 
I-IV-11 and I- ( -Q)- I I - I I~ ,  V, I' and I were  drawn within the potential 
flow, the l inear  velocity integrals over these contours are zero, and hence 
r + rl = 0 and r + rz = 0, o r  r l  = r2. The l inear  integrals over cavity 
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segments 1-1' and 11-11' cancel. Contours 11-IV-I and 11'-V-I' a r e  
termed regular contours, since they intersect the cavity at  equal abscissas.  
Taylor 's  [Kelvin's] theorem claims that the velocity circulation in steady 
motion is the s a m e  over any regular contour encompassing the profile 1 3 1 .  

8. Application of the Sedov theory to cavitating hydrofoils 

Sedov's theory 1191 can  be used for  determining the hydrodynamic 
character is t ics  of a hydrofoil provided that i t s  profile equation y = f ( x )  
is known. From the physical point of view the flow in the vicinity of a thin 
curved profile can be approximately treated as the superposition of two 
flows - one induced by the vortex strength v ( x ) ,  distributed along the 

segment (- T .  + i), and another, corresponding to cavitated flow past  the 

profile and generated by sources  9 ( x )  2 u,, distributed along the segment 

b 

(-p b fa). 

In o rde r  to construct the theory of a thin cavitating hydrofoil we assume 
in the case  under study that W , ( z )  is a complex potential in the vicinity of the 
vortex sheet (W,(z )  = rp, +i$,), while W,(z)  is a complex potential of symmetr ic  
cavitated flow (W,(z )  = (p, + iq,). In keeping with boundary conditions (7.16) we 

have the following symmetry conditions: 

approaching segment h from the top (+) and the bottom (-), u ' + = - u , - ,  
dWE - while u1+ = ol- and F,(z) = - -u~- - Iu? .  Also UZ+ = u2- = u,; 02+ = -u9- a t  

interval - ;i-, fm .since by definition the cavity extends to infinity. 

d M 
d z  F, ( z )  =I = u, -iu,. Here, when 

dz  

i b  i 
We apply the Cauchy formula F ( z )  = - & $ z d C  to the contour delineating 

region G and proceeding from point z = - a  along the top surface of the 
profile and cavity to the l a rge  c i r c l e  z= - 00, then along this c i r c l e  to the 
lower boundary of the cavity, and then along it and along the lower surface 
of the profile to point L = - a  (see Figure 84). 

At the large c i r c l e ' s  circumference d3 = 2; consequently, the 
d z  2nr 

contribution to the integral  in the Cauchy formula along this circle is zero. 
The cavity boundaries f rom x = + a  to x = - 03 were moved onto the x axis; 
velocities uI and u1 at the upper and lower boundaries have the same sign, 
while the direction of t r ave r se  of the upper and lower boundaries is 
opposite. Consequently the contribution to the integral along the cavity 
boundaries is also zero. 

the profile contour from the lower to the upper separation point. Since 
Thus, the only nonzero par t  of the integral is obtained only by t ravers ing 

from symmetry F, (6)+ - F, (c)- = u,+ - u,-- = (5 ) .  
+ a  

I 
F ,  ( 2 )  = - 1 d6. = u, (2) - io, (2 ) .  

4 

Substitution of u, ( x ,  0) into the f i r s t  linearized boundary condition yields (7.17). 
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The idea underlying the Sedov solution consists in selecting auxiliary 
function g(z)  in  such a manner that the integrand in the Cauchy formula 
applied to  function F,(z)g(z) would contain only the imaginary par t  of F,(z). 
It is c l ea r  that function g(z) must be continuous in region G ,  and analytical 
function F , ( z ) g ( z )  should decrease  at infinity not slower than 1/z. Function 
g ( z )  to both s ides  of the cut ( - a ,  + a )  should have a different sign so that 
g(x, +io) would be equal to-g(x,-io). Under these conditions the Cauchy 
integral applied to function F, ( z ) g  ( z )  will have the form 

We introduce, in the assumed coordinate system, the function p ( z )  -cG, 
the root taking a minus sign at x <  -a. This function is continuous 
over the ent i re  region G and at the boundaries of the segment. If the root is 

taken with the appropriate signs i t  will have the form g ( x  +io) = - g ( x - i O )  = 

= ip. Hence 
a -c 

- iZfJg(Q = 2u, . 

The Sedov formula can be expressed in  the following final form in the 
assumed coordinate system: 

(7.18) 
4 

dW, - rr The expansion of F, as t + is - dz - -+ 2nz . . . Expression (7.18) with 

the f i r s t  of boundary conditions (7.16) yields 

The l i f t  of !he profile is 

(7.19) 

(7.20) 

The suction force acting on the profile in the vicinity of z = - a  is a l so  found 
from the Sedov formula 
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Simple calculations yield 

(7.21) 

In a real, discontinuous fluid a Zhukovskii vortex forms  a t  the sharp 
leading edge, a sheet of such vortices rolls off the profile surface, and the 
suction force vanishes. This produces the Zhukovskii d rag  X j =  - P ;  the 
Zhukovskii d rag  coefficient is 

c,j = 2x (a + a,)*. 

The complex velocity F,(z)  due to sources  9 ( x )  = 2v, = 2V0p(x )  distributed 
along segment - -a < x < + 00 can also be obtained from the Cauchy formula. 
On the basis of the assumed symmetry F,(z)can be expressed a s  

(7 .22 )  

The integration in (7.22) is carr ied out only along the profile and cavity 
axes, which were moved to the x axis. In spite of the fact that the drag  
for a cambered wedge is not obtainable f rom the Bobylev formula and 
cannot be calculated by the same method, we shall  s t i l l  cal l  it  the Bobylev 
drag. 

For  a plane cavity the contour of f ree  boundaries a t  high x is / 3 /  

x, 
e G  Bobylev’s drag  coefficient cd = - for  an uncambered wedge is obtained 

b- 

directly from the above solution and, for small  angle and n = 0, is equal to 

(7.23) 

According to  the Sedov formula, which is valid only for  slender bodies, the 
drag  coefficient at  a > 0 is approximately equal to c d  + o .  

with wake cavitation has the s a m e  lift and drag  as the profile camber-line 
section in noncavitated flow, but with the Bobylev drag  calculated for the 
same but uncambered profile added to the camber-line section drag. 

As a result  we obtain the following general  conclusion: a slender profile 

9. 
wedge-shaped profile 

Estimating the hydrodynamic features of a noncavitating 

Figure 85 shows the pressure  distribution along the edges of the wedge. 

The solid curve corresponds to the pressure  distribution p- ‘u over 
UV; 
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the edges of a symmetric wedge (Bobylev's problem). The dashed cu rves  
for  ,&, and p,+J show the p re s su re  distributions respectively fo r  the lower 
( - )  and upper (+) boundaries of a cambered wedge; the a r e a  bounded by 
these curves  is proportional to  the lift. An obvious condition for  the 
absence of cavitation at the upper edge i s  fi  ,+, > 0, i. e., the p re s su re  at  the 
surface of this edge should be higher than the static 'pressure.  

FIGURE 85. t 
I 

We shall clarify the limiting conditions for  noncavitated flow past  a 
wedge-shaped profile. We designate the tangential velocity of flow past the 
edges of an uncambered wedge by V, = V,, -t up and the additional tangential 
velocity induced by the vortex sheet (profile camber) by u l .  
tangential velocity is then: 

The resultant 

at  the upper edge 

VS(+l  = V, + u, + u,; 
at the lower edge 

VI(-, = v, + u, - u1. 

The p res su re  at the upper and lower edges is obtained from the 
Bernoulli equation 

The condition for  noncavitated flow at the upper edge is p+ = po or  
u2 fu, = 0 . Velocity u2 for  an uncainbered wedge is negative, and hence 
V ,  + u, < Vo; the resultant velocity at the nose stagnation point is zero and 
hence V, f ut = 0 and ue - - V , .  
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Using the pressure  distribution over the edges, we determine the lift 
and the Bobylev drag. Retaining [only] f i rs t -order  infinitesimals, 

t o  
Y = r (pI-, - PI+,) dx = eV,  + U ~ M U , , + ,  - %,-J dn. 

X, = (P(-, + P,,,) pdx  = -2 lev& $. Cui' + u:)l pdx 

4 -4 

(7.24) 
Q r 4 r * 

By definition uII+, --u,,-, = y (see Section 7). Consequently, the elementary 
circulation at  chord point x is d P =  ydx = Pu,,+,dx, while according to 
Zhukovskii's theorem the elementary lift is dY = Q ( V ~  + & ) d r ,  where 
V, + u2 = VO is the velocity past  the vortex d r .  It was assumed in the preceding 
sections that for  an  infinitely thin wedge (p-0) us = 0; for a wedge with 
finite angle p ,  uz and V,, are  functions of abscissa  x .  Consequently, the 
refined form of equation (7.17) is 
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(7.17a) 

Theoretically the maximum lift corresponding to the cavitation boundary 
( p ,  = pl,) can be obtained when u,(+, = - u z .  Hence from (7.24) 

The drag of an uncambered wedge from (7.24) is 

+I 

However, Bobylev's solution yields directly 

Equating both these expressions for x b  we can set  

With the above expressions we find the limiting formulas fo r  a cambered 
wedge when the pressure  a t  the upper edge equals the static p re s su re  in the 
flow: 

(7.25) 
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If the profile curve of the wedge is curved along an a r c  segment 
with camber f ,  then in o rde r  to  obtain cumax - 0 at a = 0 we require that 

{ I 7p ( I  -T p') . The Sedov formula for  a circle-arc  segment gives 

a% = 0 and a, = 2+, and therefore when a = 0 we have impact-free entry and 

the Zhukovskii d rag  is zero. 

2 4 

I 

P. deg 

C" max 

f - 
b 

K O  max 

Table 15 lists values of c,, and corresponding values of f for wedges 
with different p .  The lower row gives values of the theoretical l i f t /drag 

ratio K,,., = -. 
Bobylev drag  should be supplemented by the frictional resistance and the 
Zhukovskii drag. 

the upper edge U, + uII+, = 0, while at  the lower edge u, + u,,-,= 2 y. A s  a 
result  the tangential velocity at  the lower edge is Vr,-,= V,, + 2  up. 

',ax 

X6 
Actually the value of K,,,, is much lower, since the 

The maximum lift from (7.25) is defined subject to the condition that at 

2 3 5 I 9 

0.085 0.124 0.197 0.264 0.318 

0.00675 0.01 0.0157 0.021 0.025 

28.5 19.0 11.5 8.2 6.4 

At the stagnation point V, = 0; consequently V, + 2 u, = 0, and this point 

is situated at abscissa  x h ,  where u, = - f V,,, while the excess p re s su re  for  
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an uncambered wedge is 3 /4  of the velocity head. Hence the lift which 
can be actually attained at the upper edge in  the absence of cavitation is 
somewhat lower than that calculated from (7.25). In general it is always 
desirable  to attain impact-free entry under operating conditions, i. e., 
one should s t r ive to  locate the stagnation point a t  the nose in the manner 
shown at  the bottom of Figure 86. 

10. Polar diagram of hydrofoil and experimental data 

Figure 87 shows the hydrodynamic character is t r ic ts  of a delta-shaped 
foil  with opening [wedge] angle 2 
angle a, = 3" (see equation (7.20)), a2 = O .  Such hydrofoils were  tested by 
Fedorov and the experimental data were  compared with experimental 
resul ts  /24/.  

with relative immersion depths of equal to 0.955, 0.445 and 0.255. The 

principal quantities needed for  calculating c, were  obtained from formula 
(7.14) with 4 = 0.8; the principal resul ts  are listed in Table 16. 

= lo", span L = 320 mm, chord b =100mm, 

The models in these experiments were  towed a t  8 m / s e c  
h 

CY 

0.50 

0: 25 

0 5 d 

FIGURE 87. 

It is seen from Figure 87 that the experimental data (points) are very 
The las t  two columns of Table 16 close to the theoretical resul ts  (lines). 

l i s t  the averaged experimental data on and on the zero  lift angle a,,= - a,- 
-px. Comparison with theoretical resul ts  shows that they are in satisfactory 
agreement with experimental data. 

The drag coefficient is calculated f rom the expression 

c, = cm + c,t + c,/ + 2,; 
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the Bobylev drag  is given by 

8 4 
Cfi = y ( 1  - ;; p) p* = 0.172; 

the induced d rag  is 

h 0.13~; 7 = 0.955; 

h 0.15~;; e 0.455; 

0 165~2; - = 0.255; 

Ca 
C,l = y nAx, t- ') 

h 
b 

and the Zhukovskii drag is given by 

czj = 2n (a + px + ap + a,)*. 

TABLE 16 

0.955 0.300 0.95 0.84 1.092 4.78 2.94 0.25" 3.01 3.15 

0.255 0.080 0.75 0.66 1.092 3.78 
O . K X / O . M ~ ~  0.85 10.73 / I , O J Z (  4.28 1 

12.60 2.31 1 0 . ~ 1  1.65" 2.56 2.29 13 .90  4.50 

" 
-3-0.*5 0.10 c,,f = 0.3 

0:05 0:lo 
ca,+ '0.08 

FIGURE 88. 
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In the given case  a, = 0, the frictional res is tance is 2cl = 0.01. In 
general the frictional res is tance is calculated either f rom the Prandt l -  
Schlichting formula, o r  f rom experimental data. 

h Figure 88 shows polar diagrams f o r  immersion depths of 

= 0.08. It is seen by comparing these curves that the experimental data 

= 0.3 and 

differ to a grea te r  degree from the calculated resul ts  than those f o r  the lift. 

satisfactorily the lift, and somewhat less satisfactorily (but st i l l  cor rec t  in 
a qualitative respect)  the total drag. 

The approximate theory of cavitating hydrofoils thus expresses  

11. Fully stalled profile 

A plate in.Rayleigh flow (Figure 77, IV), a cambered airfoil  or profile, 
flow past  which involves s t reamline separation from the upper surface 
(Figure 77, 111), can be identified with flow past a tapered profile and the 
above theory can be applied to these cases .  It was pointed out in Section 1 
that free s t reamline AD and l ine AB can be treated as the walls of profile 
ABD and it, in turn, can be interpreted by means of the theory of profiles 
with cavitated wakes. 

AC of a plate should perform the same  function as for  a tapered profile. 
Hence the lift actually developed in a flow past  a plate can be determined in 
two ways: on the one hand, f rom Rayleigh equations for  plate AB, placed in  
a flow at angle tt, and on the other hand, for  equations of the wing theory 
referred to angle of attack n for  chord AC of the camber  line. As f o r  wedge- 
shaped profiles these considerations are valid primarily for  smal l  angles 
of attack, when the angle between the plate and the free s t reamline is small .  
The lift coefficient re fer red  to  chord b is then given by 

The mean (camber)  l ine AC (dashed line) [of a wedgel and the mean chord 

The solution of the problem of s t reaming flow past a plate at some angle 
of attack / l o /  yields the following expressions for  the l i f t  and drag: 

(7.26) 

The lift and drag  coefficients for  sma l l  8 are  respectively cu = 5 e and 

e, = - ; e*. 
Equating the lift and d rag  coefficients obtained from the streamline-flow 

theory and from the wing theory we find that 

cu = 2n (a  + a,) = + e; 

c, = 2n (a + n2)*+ Crb = + e2. 
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According to  the f i r s t  expression the effective angle of attack is a +a, = 

A plate in  s t reaming flow can be treated as a deforming wedge-shaped 
profile, the upper sur face  of which r i s e s  with an  increase in t) such that the 
effective angle of attack a +a, increases  four t imes as slowly as angle 8. 

It is possible to  select  a wedge-shaped profile with angle U which has  
the same  lift as a plate  a t  some angle of attack, in  which case 

e. 

I values of cy will vary  along straight line AD (with slope ;), and cz respective- 

1 ly along curve A'D' for  flow past  a plate and curve  A 'D"for flow past a 
cambered plate or wedge. It is thus found that, when rotated so as to  reduce 
angle 0 ,  a plate with solidified streamline above it and the cambered wedge 
behave like an airfoil,  while when rotated so  as to increase the angle of 
attack they behave as a plate in  streaming flow. 
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Separation from the top surface is sometimes delayed and occurs  a t  
some angle of attack0 > 8,; the lift drops sharply upon separation. However, 
this separation delay occurs  a t  a relatively low velocity and cannot be 
expected at high flow velocities. 

12. 
a cavitating plate 

Application of wing theory to  the calculation of 

The validity of the correspondence of lift coefficients cu = 2 n(n + a,) = 0 

for  a cavitating plate and for  a camber-line a r c  of a wedge-shaped 
airfoil can be established by direct  calculation of angle a,. This angle is 
now calculated from the Sedov formula (7.20), while the mean line of a 
profile formed by a plate and the f r e e  s t reamline above it will be calculated 
from Fedorov's formulas 1 2 3 1 .  

FIGURE 90. 

Figure 90 depicts the plate and f r ee  streamlines for  8 = lo", the 
coordinates of which were taken from 1 2 3 1 .  The f r ee  s t reamline makes a 
large angle with the plate, the mean-line chord has  a lso a relative length of 
1.0, and hence the abscissa  of point D does not coincide with 1.0. At low 
e, in the limit a s  8 + 0, the abscissa  of point D tends to infinity. The above 
remarks  pertain to  very small  angles 8. 

streamline contour behind the plate i s  expressed by Fedorov's formulas 
In the coordinate system shown in Figure 90 the equation of the f r ee  

4+x'sinti  r2" (ch27- 1)-2(chr- ; ' 'I - - _  

$ - - 0 [ c ~ ( e h 2 r - 1 ) + 2 ( c h ~ +  I )  f n s i n 8  1 : 
y sin0 sh2r 
b 4+ns inH(  2 '). -=- -- 

where r is a parameter  varying from zero to infinity. For  small  8 we have 
approximately cos A = 1 and sin 8 = 8. It can be shown by calculations that, 
as 8 - 0, the f ree-s t reamline point above the trailing edge of the plate 

A -  I is obtained at ~,=1.76.  G - )  
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Using these expressions, we find the correspondence between the angle 
of attack u of the chord line and the angle of attack f3 of the plate. For 
smal l  angles of attack 

For  the mean l ine we may se t  t ( x ) = & P ' ( x ) ,  where 

With the aid of (7 .20)  and various computations, we derive 

I Hence, by direct  calculations, a + a, = 

The drag of a cavitating plate is c, = +ez. Since a = 0.1 e, the wedge 

formed by the plate and s t reamline OD will have a wedge angle of 2 CI = 
= 2 ( 0 - a )  = 1.70. Bobylev's dragfor  this wedge is 
i. e., 16.5% overrated. Consequently in  practice the drag of a plate is 
equivalent to the drag  of a wedge formed by the plate and the f r ee  boundary. 

= (0.85)2e2 = 1.830*, 

13. Stalled foil of finite span 

Flow past a stalled foil of finite span, as past an ordinary foil, involves 

the appearance of an induced velocity and an induced downwash a, = e. 
However, the upper surface of a stalled foil is formed by the f r e e  boundary, 
which reac ts  to the downwash by coming close to the trailing edge of the 
profile by an amount a,b. 

increases  by ai due to  the approach of the boundary and decreases  by an 

amount a, due to  the downwash proper. Thus, i f  the angle of attack of the 
chord line at  h = 03 is denoted by 11, then the effective angle of attack of the 
chord l ine for  a finite-span foil is 

Hence the angle of attack of the chord l ine 

a = & + - a  1 -a,=a--la =0.15(8-aJ. 
ef 2 2 1  

The value of a, for  the profile formed by the plate and the f r e e  boundary 

is proportional to  a ,  i. e., $ = - =- Hence the effective angle of 
0.15 3 '  

attack for  a finite span is 

I 
(a + allef= ( I  + 3) (a - - ; a 1 )  = - 4 (e - ai) 
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The lift coefficient cy when the immersion depth h is so great that x2  = 1 
but x, sti l l  differs f rom unity, will have the following form when the 
additional, cavitation-induced downwash is taken into account: 

(7.27) 

This yields the induced downwash angle a, = 

stalled hydrofoil. It can be shown that the stalled and ordinary foils 
have the same downwash angle provided 
they have equal h and cu. 

Using Fedorov's formulas 1 2 2 1 ,  
Kryukov / 9 /  obtained an  approximate 
expression for the lift coefficient of an  
infinite plate ( h  = 03) a s  it approaches the 
surface. Denoting the s t reamline thickness 

a t  infinity by 6- = ;, the Kryukov equation 

in the vicinity of a 
l + l f r  

CY 

0.3 

0.2 
6 

0. assumes  the form 

2n sin e COS e cos R c -  0 
5 10 15 9 u -  4+nsintt ( 1  + l+3,3fi)* 

FIGURE 91. 

Using (7.26), we derive an expression 
for the function which takes into account 

the variation in cy as the free surface is approached (cos L 1): 

For not too small  immersion depths 3 can be replaced by the relative 

immersion depth h-= :. Function x3  increases  as the f r ee  surface is 

approached and equals 2 a t  0 = 0. 
The lift coefficient is now 

For planing 8 = 0, x, = 2, x ,  = 0.5 and r = 0; hence 

nB cy - - 2 '  
l+r 

At large depths x s =  1 and x ,  = 1; consequently 
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Figure 91 compares  Kryukov's / 9 /  experimental data with those obtained 
from (7.28), in which, however, cy- w a s  calculated from (7.26), since 
angles 8, which in the experiments were a s  high a s  18", cannot be treated 
a s  small. It was assumed in  these calculations that 1 + T = 1.0 and 1, = 4. 
This comparison shows that the theoretical values of cy a r e  higher than 
those obtained experimentally. As this comparison was conducted for  

wedge-shaped foils, it  may be assumed that cyso= - k, and that the 

correction factor is k , l s o . 8  - 0.9. 

The above fundamentals of the theory of cavitating hydrofoils allow one 
to ca r ry  out pract ical  calculations for  high-aspect-ratio foils. Comparison 
of the theoretical resul ts  with experimental data shows that the theory 
descr ibes  the actual flow quite acccrately. It should be noted that in 
examining cavitating hydrofoils we considered only the simplest  scheme. 
This amounted to assuming everywhere that the lift distribution over the 
span is elliptical; the induced velocity and the dynamic surface r i s e  were 
taken into account only fo r  the center  of the foil. The method for  including 
the effect of the cavity width on the induced downwash in the vicinity of the 
hydrofoil is quite approximate. A number of other simplifications made in 
constructing the theory can be listed. However, in  spite of all these 
approximations the theoretical and experimental results a r e  in quite 
satisfactory agreement,  and this makes it safe to claim that in other cases  
the construction of an approximate theory based on the same principles will 
yield satisfactory resul ts .  
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